Logan Creek Stream Restoration Project Year 5 Monitoring Report

Jackson County, North Carolina NCDMS Project ID No. 92515; Contract No. D06046-A Savannah River Basin: 03060101-010020

DWR # 20080879 Ver. 2, SAW ID: 2008-01711

Project Info: Monitoring Year: 5 of 5

Year of Data Collection: 2019

Year of Completed Construction: May 2015

Submission Date: December 2019

Submitted To: NCDEQ – Division of Mitigation Services

5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

NCDEQ Contract ID No. D06046-A

March 6, 2020

NCDEQ - Division of Mitigation Services (DMS) Attn: Mr. Paul Wiesner, Western Project Management Supervisor 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

Subject: Response to DMS comments on the Year 5 Monitoring Report Draft review for the

Logan Creek Stream Restoration Project; Savannah River Basin - CU# 03060101; Jackson County, North Carolina; NCDMS Project # 92515; Contract No. D06046-A

Dear Mr. Wiesner,

Please find enclosed the final Logan Creek Year 5 Monitoring Report. We have addressed the comments that you submitted on the draft report and our responses to your comments are the following:

- Section 2.0 Methodology: Please review this section. The section notes that monitoring data was collected in October 2018. MY5 is 2019. Please update accordingly. *This mistake was corrected.*
- Section 2.1 Vegetation Assessment: Please QA/QC the third paragraph. Based on Figure 2B, "Stream Relocation" should be updated to "New Trail Alignment". Please also report the trail's approximate average distance from Logan Creek and its approximate minimum distance from Logan Creek. Please also report the trail's approximate width.

 It appears that the reference should have been to the fourth paragraph where the trail was discussed. The wording has been corrected and trail measurements have been added to the discussion.
- Executive Summary & Section 2.2.1-Morphologic parameters and Channel Stability: In the report text, please briefly explain why the longitudinal profile for UT8 was not established in MY0. Please note when it was established and the monitoring years that data was collected for the reach. This text should be incorporated with the text noting the additional cross section on the reach.
 - The requested discussion of UT8 was added in the Executive Summary, but it was placed in the paragraph where the IRT site visit is discussed and reference was made to this UT. If this is unacceptable, we can modify where this is located.
- Section 2.2.4 Project Problem Areas: In the report text, please note any proposed resolution for the continued structure piping noted at CPA 3-5 during MY5. If no action will be taken, please add that to the report text.
 - CPA 3-5 was repaired during February 2020, and this has been noted in the report in Section 2.2.4 and photos added to Table 12.

•

• Executive Summary & Section 2.2.4 - Project Problem Areas: EA-1 – Why does the landowner continue to mow this area at a 10-foot width? Has there been any discussion with the landowner to cease this mowing? What is the agreed width? Please add additional verbiage to the revised report as necessary. We will discuss this with the NCDEQ Stewardship team during the 2/4/2020 pre-closeout meeting. It is likely that NCDEQ Stewardship will require resolution on this issue with the landowner before accepting the site. They will also likely want a maintenance width agreed upon in writing and signed by the landowner.

The report was modified so that this area is no longer called an encroachment area in this report. Based on measurements of the trail, the width in this area is only slightly greater than other areas and we believe does not constitute an encroachment. The greater issue, as pointed out, is that a trail width needs to be established in writing and agreed to by all parties. We are developing an infrastructure map that details our findings on the trail and other issues and will work with the Lonesome Valley development and the NC Stewardship Program to establish an agreement for long-term stewardship of these issues. We are also making Lonesome Valley aware of other encroachment issues and asking for their assistance in resolving these. We will communicate any findings or resolutions to DMS. These additional areas are now shown on the CCPV and discussed in the report.

• Section 2.2.4 - Project Problem Areas: In the revised report, please indicate when the beaver and associated beaver dams were removed from the site. At a minimum, a scheduled removal date should be included in the revised report. DMS recommends removing beaver dams as soon as possible to avoid potential irregular monitoring data, project damage and additional maintenance. Beaver and beaver dams should be controlled/maintained through IRT project closeout.

The beaver and their dams have been addressed and this is discussed in Section 2.2.4.

• Section 2.2.4 - Project Problem Areas and CCPV Sheets: Section 2.2.4 indicates that existing beaver dams are identified on Figures 2A and 2B; however, the beaver dams are not shown on the CCPV sheets. Please update accordingly.

Given that these have been taken care of, we are indicating that beavers were found on the site and dealt with. We have removed the callouts for beaver dams, on the CCPV maps.

- Table 2 Project Activity and Reporting History: Please add invasive treatments, beaver removal efforts, and/ or any maintenance activities to the table. Activities from MY1 MY5 should be included in the table in chronological order.

 Table 2 has been updated with any repairs, invasive vegetation control and beaver control activity and the time period that this activity was done.
- Table 12 MY5 Stream Problem Areas and Photos: DMS recommends updating the table name as most of these areas are not issues in MY5. Suggest "MY1-MY5 Stream Problem Areas". While it is good to track previous issues, please make sure the table notes when the issues were initially identified (monitoring year at a minimum) and when Michael Baker Engineering believes the issues were resolved. It may also be helpful to have a RESOLVED/ ON GOING ISSUE column for clarity. Lastly, please provide recent (Fall/ winter MY5) photos of each area so the reader can observe the current condition of the reported issue/ PA. The title of this table has been changed as suggested. We added a new column called status and are showing if the issue is resolved or on going. We added recent photos of each location and have added photos for two new areas that were identified on our recent site visit.

- Table 9 Verification of Bankfull or Greater than Bankfull Events: DMS recommends adding a row for MY1 noting that no bankfull events were recorded in MY1. A row for MY1 was added indicating do data was collected that year.
- **Profile of UT8:** The longitudinal profile just shows profile data from MY1 and MY5. A footnote is missing from the graph. Please be consistent with the other graphs. DMS recommends including the profile that shows MY1 compared to MY5 and a separate graph showing all longitudinal profile data collected for the reach over the monitoring term.

 The UT8 profile was corrected so that both the MY1 to MY5 comparison and the profile showing the year to year comparison, are included. The footnote is also shown.

Digital Support File Comments:

- Logan Creek spatial features do not match the linear feet reported in the asset table. All UT
 feature lengths currently match. Please provide a spatial feature for Logan Creek that is
 segmented as it is reported in the asset table, and that properly characterizes the creditable linear
 feet.
 - DMS has commented that they would like the GIS shapefiles for all projects and noted that for some projects the lengths were not matching with the credit/asset table. Baker spoke with DMS Science and Analysis staff about this issue. We are happy to provide processed shapefiles derived from the as-built survey CAD files for all project features. That is, we have taken the final as-built CAD files, converted them into GIS, and modified them so that each feature segment is combined or split by reach or wetland type and that the attribute table is clear and has a length or acre value approximate to the credit/asset table. But due both to rounding issues in length and credit calculations, as well as to inherent program differences between CAD and GIS, some small differences may exist between the two. The as-built CAD files used to create the PE/PLS signed/sealed plan sheets are the legal standard by which we determine all our credits/assets. The GIS shapefiles are secondary files we derive from the CAD to more easily make maps in our reports. While small differences between the two (of a few feet here or there) are likely to occur on some reaches, particularly longer ones and ones with breaks such as for crossings, Baker has not regarded this as of particular importance. The CAD files are what have generated all official feature measurements. DMS accepted that small differences would be acceptable for the creditable features but did want the processed as-built shapefiles for each project and Baker has agreed to provide them.
- CCPV geospatial features submitted cannot be rendered in ArcMap; the files appear to be compromised. Please ensure that these files can be uploaded into ArcMap, and if not, resubmit a new set.
 - We are providing updated CCPV features in response to the previous comment; however, we have had no problems using these files.
- The CVS file shows that x y coordinates in prior monitoring years exceed the bounds of the designated plots. Please ensure the proper plot sizes are selected, or correct the x y coordinates. DMS needs these errors corrected before we can upload the data into our database. That X/Y portion of the CVS entry tool has always been used for internal purposes at Baker and over the 5 years of monitoring this is the first time that this has been questioned. We have used it to identify the plant plot and individual tree number (e.g. 4-15 means plot 4, plant 15) and not for internal plant location, as CVS does not otherwise provide an easy way to carry over clear plant ID numbering from year to year. Thus, the plot dimensions recorded in CVS

are correct for each veg plot, though we understand that may have been confusing when looking at our X/Y entry data. But using the X/Y coordinate entry this way saves Baker significant time each year during monitoring and helps eliminate errors by reducing confusion. We have long regarded it as a mild flaw in the CVS tool but have found this easy workaround to be a perfectly suitable rectification. Baker spoke with DMS Science and Analysis staff about this issue. They have allowed that for our existing projects we may continue to use the X/Y entry tool for our own purposes but for future projects ask that we enter the X/Y grid plot coordinates as the CVS program originally intended. We will also provide DMS with a copy of our plot maps showing individual plant locations within each plot. And to be clear, the CVS field protocol is being followed throughout our projects with the sole exception of this X/Y grid plot entry tool. All planted stems are identified and marked (and mapped internally) at the as-built stage and tracked and assessed throughout the monitoring phase. We have checked the CVS entry tool submitted to DMS in MY5 and vigor is reported for each year, for each plot and for each plant; it is unclear to us why this comment was made.

• Please provide a final revised GIS shapefile for the nature/walking trail located within the conservation easement. This GIS shapefile will be provided to NCDEQ Stewardship as part of the proposed closeout/ acceptance package. The property owner should understand that the trail cannot be moved in the future. A "not to exceed" trail width should be established with the landowner and documented with both DMS and DEQ stewardship prior to project closeout. The GIS shapefile for the nature trail is included with the submitted GIS files. It has been updated to show all segments of the trail. We are working with the NCDEQ Stewardship Program to document all important infrastructure at this site. We will be submitting an infrastructure map to them with this information. In conjunction with this map, a document will be prepared and submitted to the property owner that indicates the location of these items, that states infrastructure cannot be added in the future, per the deed of easement, and that establishes the width of the Nature Trail.

If you have any questions or find any issues that need to be addressed, please contact me directly at (828) 412-6100. I am submitting an invoice for this task to Ms. Debby Davis in the Raleigh DMS Office and will be providing you an email copy.

Sincerely,

Micky Clemmons, Project Manager

Michael Baker Engineering, Inc.

Logan Creek Stream Restoration Project Year 5 Monitoring Report

Jackson County, North Carolina NCDMS Project ID Number – 92515

Report Prepared and Submitted by Michael Baker Engineering, Inc. 797 Haywood Road, Suite 201
Asheville, NC 28806

NC Professional Engineering License # F-1084

TABLE OF CONTENTS

1.0 2.0					RY
2.1					
2.2	_				
2.2.1					l Channel Stability4
2.2.2	_	_			4
					1
					5
3.0	REFE	CKEN	NCES	•••••	5
					APPENDICES
Apper	ndix	A	Project	Vicini	ity Map and Background Tables
			Figure	1	Project Vicinity Map and Directions
			Figure	2	Current Conditions Plan View (CCPV)- MY5, Overview Map
			Figure	2A	CCPV MY5, North Area
			Figure	2B	CCPV MY5, Middle Area
			Figure	2C	CCPV MY5, South Area
Apper	ndix	В	General	l Proje	ect Tables
			Table	1	Project Components and Mitigation Credits
			Figure	3	Project Asset Map
			Table	2	Project Activity and Reporting History
			Table	3	Project Contacts
			Table	4	Project Attributes
Apper	ndix	\mathbf{C}	Vegetat	ion As	ssessment Data
			Table	5	Vegetation Plot Mitigation Success Summary
			Table	6	Vegetation Metadata
			Table	7	Stem Count Arranged by Plot
			Figure	4	Vegetation Monitoring Plot Photos
			Figure	4.1	Trail Relocation Photos – MY5
			Table	7.1	Vegetative Problem Areas
			Table	7.2	Vegetation Condition Assessment at Logan Creek
Apper	ndix	D	Stream .	Assess	sment Data
			Figure	5	Stream Photos by Channel and Station
			Table	8	Visual Morphological Stability Assessment
			Table	9	Verification of Bankfull Events or Greater than Bankfull Events
			Figure	6	Cross-Sections with Annual Overlays
			Figure	7	Longitudinal Profiles with Annual Overlays
			Figure	8	Pebble Count Plots with Annual Overlays
			Table	10	Monitoring Year 5 Stream Summary
			Table	11	Morphology and Hydraulic Monitoring Summary
			Table	12	MY5 Stream Problem Areas and Photos

1.0 EXECUTIVE SUMMARY

Michael Baker Engineering, Inc. (Baker) restored, enhanced or preserved 5,110 linear feet (LF) of perennial stream channel along Logan Creek and eight unnamed tributaries (UT1, UT2, UT3, UT4, UT5, UT6, UT7 and UT8) in Jackson County, NC (Appendix A). The nearest town, Cashiers, is approximately five miles west of the Logan Creek Project site. The site lies in the Savannah River Basin within the Targeted Local Watershed 03060101-010020 (Horsepasture River) and within the North Carolina Division of Water Resources (NCDWR) sub-basin formerly known as 03-06-01-01 (Keowee River Subbasin). The Horsepasture River is a National Wild and Scenic River and a state-designated Natural and Scenic River. The project involved the restoration, enhancement, and preservation of a stable channel and a Montane Alluvial/Montane Oak-Hickory Forest system (NCWAM 2010, Schafale and Weakley 1990) from impairments within the project area due to past agricultural conversion including orchard development, trout hatchery development, mink farming and more recently single-family home development.

The project goals directly address stressors identified in the Savannah River Basin Restoration Priority Plan (RBRP) (DMS 2001 and updated 2008) such as habitat degradation, inadequate riparian buffer cover, channel modification, and excess nutrient and sediment loading. The primary restoration goals, as outlined in the approved mitigation plan, are described below:

- Create geomorphically stable stream channels within the Logan Creek project site.
- Protect stable areas as well as mature trees and other desirable vegetation.
- Improve water quality within the Logan Creek project area through reduction of bank erosion, improved nutrient and sediment removal, and stabilization of streambanks.
- Improve aquatic and terrestrial habitat.

To accomplish these goals, the following actions were taken:

- Restore the existing eroding or over-wide stream reaches by creating a stable channel that has access to its floodplain.
- Improve in-stream habitat by providing a more diverse bedform with riffles and pools, creating deeper pools, providing woody debris for habitat, moving sand deposits through the reach and reducing bank erosion.
- Establish native stream bank and floodplain vegetation to increase storm water runoff filtering capacity, improve bank stability, provide shading to decrease water temperature, provide cover, improve wildlife habitat and protect this area with a permanent conservation easement.
- Improve terrestrial habitat by increasing the density of tree species that root deeply, by thinning the thick stands of rhododendron within the easement area and planting a more diverse native plant community.

During Monitoring Year 5 (MY5), our monitoring activities indicated that the planted acreage was functioning well with most banks, benches and floodplain areas developing a diverse herbaceous community and having good growth of planted trees. There were no new Vegetative Problem Areas identified during 2019. The Encroachment Area (EA-1) that was noted in 2016 is still maintained as a part of the nature trail; however, no new trees in Vegetation (Veg) Plot 3 have been affected since MY3. Despite the impacts to the trees in the plot, Veg Plot 3 still meets minimum success criteria for MY5. Because the plot meets the success criteria we are not asking Lonesome Valley to move the nature trail in this area.

The 11 channel problem areas (CPAs) noted in previous year's monitoring reports, did not show further erosion or degradation during 2019, and no new CPAs were noted in MY5. Most of the previously listed sites exhibited further stabilization during MY5. Updated photos of all previous CPAs can be found in Appendix D.

As noted in the Baseline report, eight (8) vegetation monitoring plots were installed at this site after construction, with seven (7) being installed along the restoration reach (Logan Creek, Reach 1) and one (1) being installed along the enhancement reach (Logan Creek, Reach 2). The location of these vegetation monitoring plots can be seen on Figures 2A-C. The average density of total planted stems following the MY5 growing season is 602 stems per acre (SPA). The average density of volunteer trees across all 8 vegetation plots was 405 SPA. The total average density of all planted and volunteer stems in MY5 was 1,007 SPA.

Stream geomorphological stability and performance during MY5 was assessed by surveying thirteen (13) cross-sections (8 on Logan Creek, 2 on UT3, 2 on UT6 and 1 on UT8) and a profile of Logan Creek, UT3, UT6 and UT8, evaluating the bed particle size with 3 riffle pebble counts and by observation and replicating channel location photographs. An additional cross-section was added on UT8 during MY2 surveying so there are cross-sections on all restored tributaries and reported in subsequent years. Cross-sections of all the channels indicated that there was very little change in the cross-sections during MY5. The average particle size observed in MY5 pebble counts was within the range of what has been observed in previous monitoring years, with a slight shift towards a decrease in particle size. No observed changes indicate any instability. The Visual Morphological Stability Assessment indicates that the Site is stable and performing well. All structures but one (CPA 3-5) are functioning as designed during MY5. The structures that were piping in MY3 have filled in and are no longer piping. Overall, channel morphology is responding as designed and meeting project goals.

An Interagency Review Team (IRT) site visit to Logan Creek was held on March 28, 2018. Because this project began before the IRT was established and members had never visited the site, it was felt that other visits in the area offered a good opportunity for the IRT to see this site. The visit allowed IRT members to see UT7 (EII) and UT8 (R) which were added after the Mitigation Plan was produced but was included in the As-Built (MY0) report. A profile of UT8 was not taken for MY0 because of the short length of this channel; however, the need for this data was recognized in MY1 and it was collected and reported in MY2 and in subsequent reports (MY2-MY5). The MY0 report did indicate that we would seek restoration credit for UT3, UT6 and UT8. The IRT was also able to view the nature trail that is partially within the easement area. IRT members did not find any issues with the two unnamed tributaries. There was concern with how close the nature trail was in one location, near a meander that was less than 10 feet from the stream bank. Michael Baker contacted the Lonesome Valley development on July 17, 2018 and requested that the trail be moved away from the stream. Lonesome Valley responded the next day, saying that they would address the issue. The trail was moved away from the creek in the area of concern and in one additional location where it was close. Trees were transplanted in MY5 in the original path of the nature trail and vegetation is well established.

Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the NCDMS website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

The monitoring plan for the Site includes criteria to evaluate the success of the stream and vegetation components of the project. The methodology and report template used to evaluate these components adheres to the NCDMS monitoring guidance document dated December 1, 2009 and other mitigation guidance (NCEEP

2009 and USACE 2003), which will continue to serve as the template for subsequent monitoring years. The specific locations of monitoring features: vegetation plots, permanent cross-sections and profiles, and the crest gauge location, are shown on the Current Conditions Plan View (CCPV) sheets found in Appendix A.

Vegetation monitoring plots, pebble counts, and site photo points were monitored in October 2019. Site surveys for channel cross-sections, photos and profiles were also conducted in October 2019.

2.1 Vegetation Assessment

To determine if success criteria are achieved, vegetation monitoring quadrants (veg plots) were installed and monitored in accordance with the CVS-NCEEP Protocol for Recording Vegetation, Version 4.1 (CVS 2007 and Lee *et al* 2007). The vegetation monitoring plots are a minimum of two percent of the planted portion of the Site with eight plots established randomly within the planted riparian buffer, per CVS Monitoring Level 2. No veg plots were established within the undisturbed forested areas along the northern part of the project or within the undisturbed forested areas along Reach 2 of Logan Creek and UT5. A small area was disturbed within this enhancement reach (R2) so that structures and channel repairs could be made during construction in April of 2015. Veg Plot 1 is located in this area where bare root trees and herbaceous vegetation were planted. The sizes of individual quadrants are 100 square meters for woody species and 1 square meter for herbaceous vegetation. Herbaceous vegetation quadrants were established in one corner of the larger woody vegetation plots and monitored by comparative photographs taken each year.

Trees surviving within vegetation monitoring plots were visually accessed during MY5. All vegetation was found to be in good condition. All plots indicated that most trees were growing and in good to excellent condition and herbaceous vegetation was well established and growing well. The average density of total planted stems following the MY5 growing season is 602 stems per acre (SPA) with a range from 364 SPA to 890 SPA. The average density of volunteer trees was 405 SPA and the density ranged from 0 to 1,133 SPA. The overall average, including both planted and volunteer stems, was 1,007 SPA. With an average planted density of 602 stems per acre, the Site meets the final success criteria of having 260 stems per acre by the end of MY5.

The invasive multiflora rose (Rosa multiflora) that was noted in previous years was treated in previous years and again in May and August of 2019. As of MY5 monitoring (October 2019), the multiflora rose is largely under control and no new growth areas have been noted. No other areas of concern regarding the existing vegetation were noted along Logan Creek or any of the tributaries. Year 5 vegetation assessment information is provided in Appendix C.

Concerns about the walking trail that parallels the stream were raised by the Interagency Review Team (IRT) during a walkthrough in March 2018. The IRT pointed out one area where the trail was within approximately 10 feet of the stream along the outside of a meander bend near station 19+50. This issue was raised with the Lonesome Valley maintenance personnel, and during MY4 field work it was noted that the trail had been moved away from the stream (called out as Trail Relocation in Figure 2B of the CCPV). In MY5 trees and shrubs were transplanted into the area of the previous trail location. To better describe the location of this trail we measured the distance from the creek every 200 linear feet down the trail from the upstream end and found that the trail on average is 48 feet from the top of bank (range is 6' to 105', n=14) and averages 6.6 feet in width (n=12). The narrowest distance off the top of bank was 6 feet and that was at the back of a point bar on a meander, so the creek was a greater distance from the trail and is stable. The maintenance staff also moved the trail crossing of UT4 upstream away from Logan Creek, where it appeared to be closer than 10 feet. This area is also called out in Figure 2B.

2.2 Stream Assessment

The restoration approach for the Logan Creek Site included the restoration of channels to a stable morphology that allows for the transport of water and sediment through the Site and allows stream flows larger than

bankfull flows to spread onto the floodplain. Stream monitoring efforts focus on visual observations, a crest gauge to document bankfull flooding events, surveying established stream cross-sections and channel profiles to assess channel stability and pebble counts to assess if proper sediment transport is taking place.

Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built Survey.

2.2.1 Morphologic Parameters and Channel Stability

Cross-sections were classified using the Rosgen Stream Classification System (Rosgen 1994) and all cross-sections were evaluated to determine if they meet design expectations. Cross-sections were also compared to cross-section plots from previous monitoring years to evaluate changes in the cross sections. Morphological survey data is presented in Appendix D.

A longitudinal profile was surveyed for the entire length of Logan Creek, UT3 and UT6, and UT8 to document changes during MY5. The survey was tied to a permanent benchmark and measurements included thalweg, water surface, and top of low bank. Each of these measurements were taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth.

Stream geomorphological stability and performance during MY5 was assessed by surveying thirteen (13) cross-sections (8 on Logan Creek, 2 on UT3, 2 on UT6 and 1 on UT8) and a profile of these channels as described above. The bed particle size was evaluated with three riffle pebble counts and by observation and replicating channel location photographs. Cross-sections and profiles of all the channels indicated that there was very little change in the channel during MY5. The Visual Morphological Stability Assessment indicates that the Site is stable and performing at 89 to 100 percent for all parameters. The last structure on UT8 was piping during MY5 surveying (CPA 3-5); however, this was repaired during the winter (February 2020). Overall, channel morphology is responding as designed and meeting project goals.

Pebble count data for MY5 indicates a slight shift to smaller particle sizes but is well within the range of observed data as compared to previous monitoring years. The channel had a mean D50 of 16.5 mm during baseline sampling, 36.9 mm during MY1, 22.2 mm in MY2, 26.8 mm in MY3, 34.0 mm in MY4, and 23.7 mm in MY5. This represents a general coarsening of particle size since baseline sampling.

2.2.2 Hydrology

A crest gauge was installed on the floodplain at the bankfull elevation along the right top of bank on Logan Creek at approximate Station 30+00. There were three bankfull events recorded on the crest gauge during MY5. The crest gauge indicated a water depth on the floodplain of 19.5 inches during the first event, 5.2 inches during the second event, and 1.5 inches during the third event. Crest gauge readings are presented in Appendix D.

2.2.3 Photographic Documentation

Reference transects were photographed at each permanent cross-section. A survey tape is normally centered in the photograph when the tape is used to identify the transect. The water line was located in the lower area of the frame, and as much of the bank as possible included in each photograph. Photographs were taken at specific photo points established along each channel during Year 5 monitoring. Photographs from these points are replicated each year and used to document changes along the channel. Points were selected to include grade control structures as well as other structural components installed during construction. Annual photographs from the established photo points are shown in Appendix D.

2.2.4 Project Problem Areas

Project problem areas fall into three types: Vegetation Problem Areas (VPA), Encroachment Areas (EA), and Channel Problem Areas (CPA). All observed problem areas are shown on the CCPV maps. There were no VPAs identified during MY5. Vegetation was well established across the entire project site.

One structure was piping during MY5 monitoring (CPA 3-5). This structure was repaired during February 2020 and is no longer piping. Other structures that were noted as piping in the past have filled in naturally and are no longer piping.

No new erosion areas were noted in MY5. Some of the areas of erosion that were called out in previous years (CPA 2-1, CPA 2-2, CPA 2-4, CPA 2-5, CPA 2-6, CPA 3-1, CPA 3-2, and CPA 3-3) have stabilized and are becoming vegetated. The remaining areas of erosion (CPA 3-4, CPA 2-3) have not completely stabilized but have not gotten worse in MY5 and are supporting vegetation.

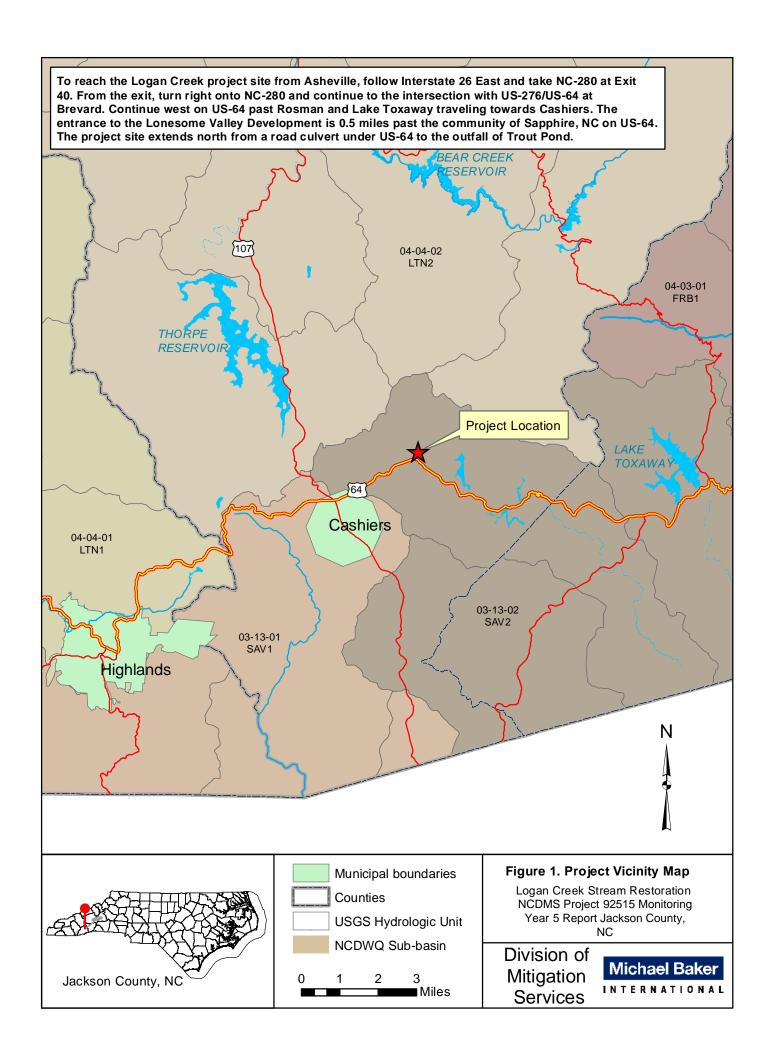
An area called EA-1 in past reports is the alignment of the nature trail that passes along the outside margin of Vegetation Plot 3, since no trees in the plot have been affected since MY2 we are not calling this an encroachment area in MY5. Path maintenance in this area is only slightly wider than the trail is in other areas. We are working with the landowners and the NC Stewardship Program to define the width of the nature trail maintenance. Despite the proximity of the trail to the plot, Veg Plot 3 still meets minimum success criteria for MY5. EA-2 is a small triangular area that is being mowed by an adjacent landowner. EA-3 is a trail from an adjoining home to the easement area down a steep slope and then utilizes a foot bridge that the development placed but later abandoned. This foot bridge was supposed to be removed. We will be contacting the developer to work with these landowners to correct these encroachments and if immediate action is not taken, we will place fence post on the easement line or other obstacles in the encroachment area, to limit access.

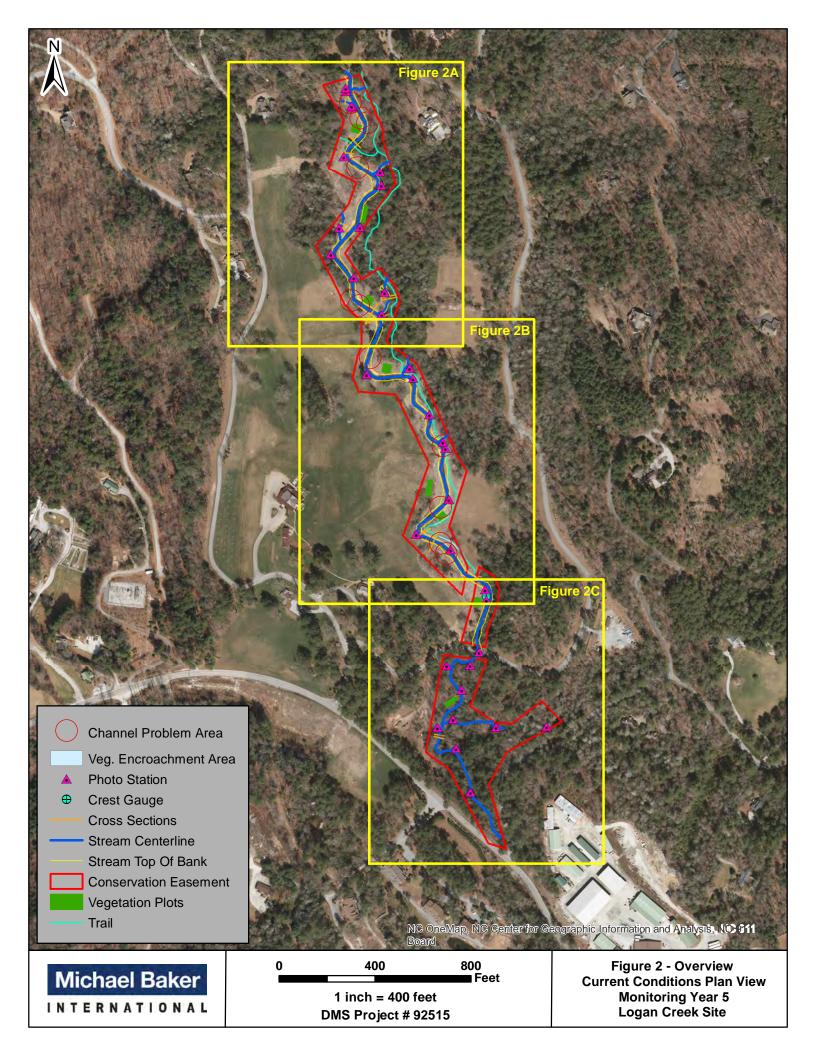
Two beaver dams were noted during the survey in October of MY5. We contacted the Lonesome Valley development about Michael Baker working with APHIS to remove the beavers and found out that the development was already taking care of the issue. During follow-up visits, between October 2019 and February 2020, we found that the beaver and their dams have been removed.

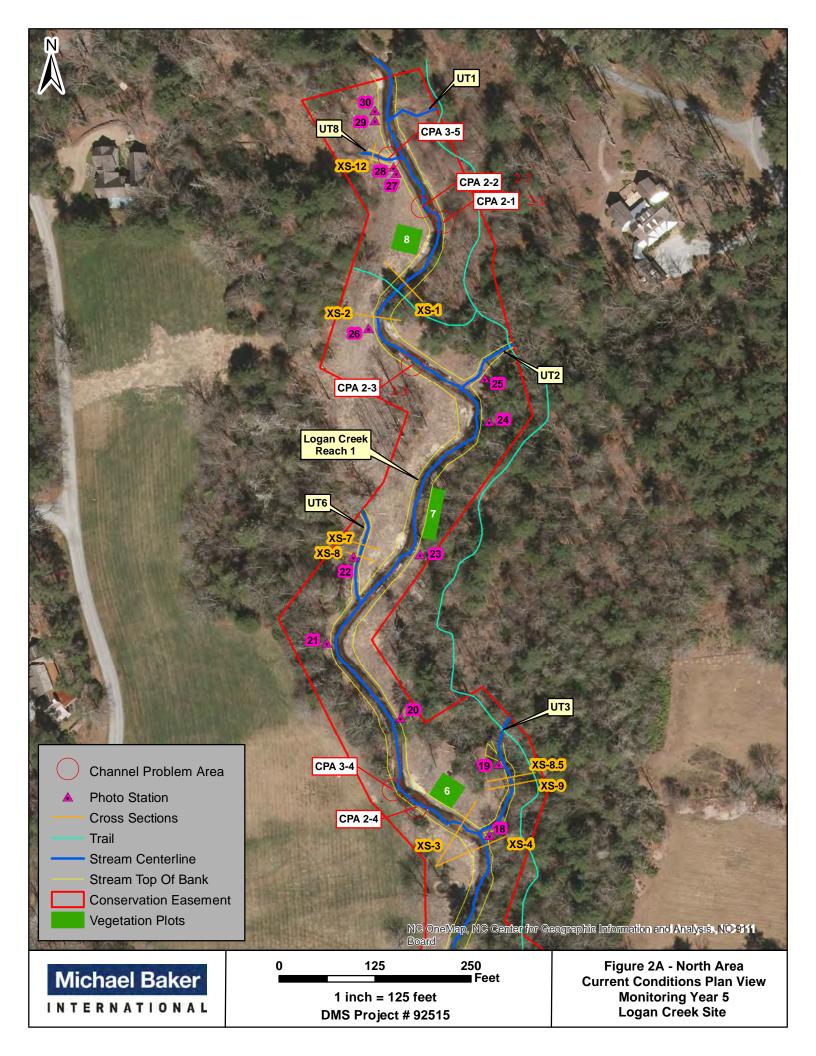
All issues discussed above reference the CCPV mapping and the Stream Problem Area table included in Appendix D and the e-File data with associated photos.

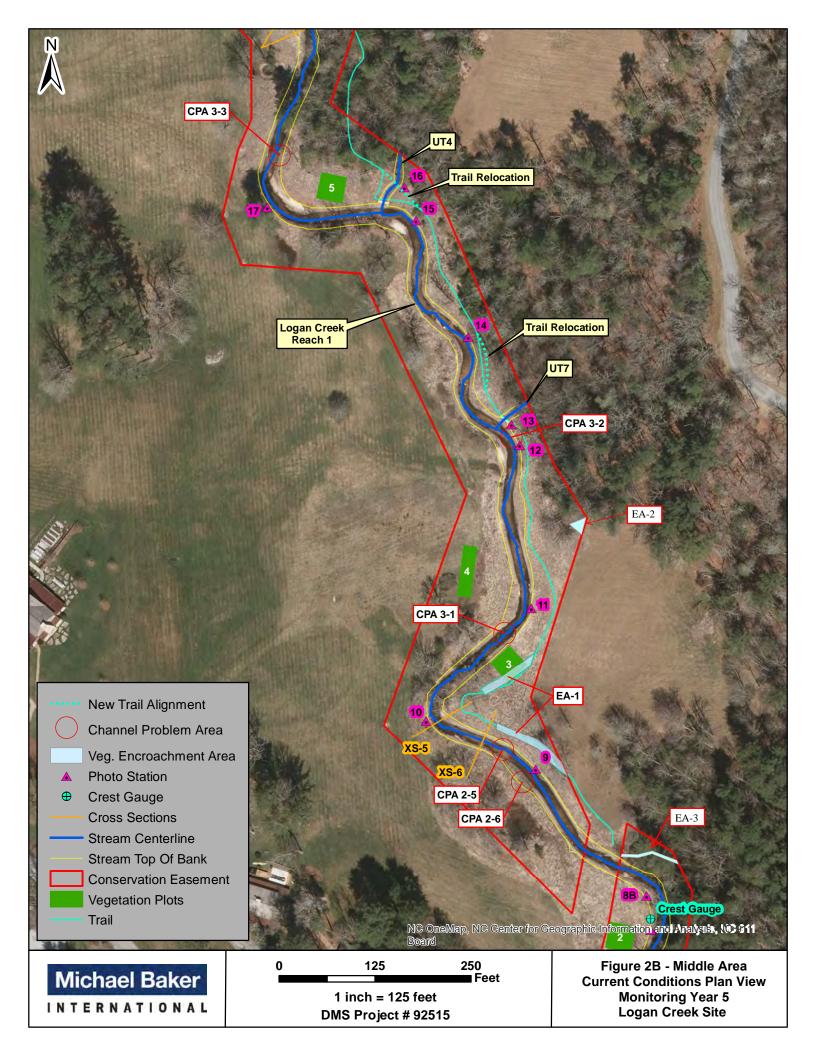
3.0 REFERENCES

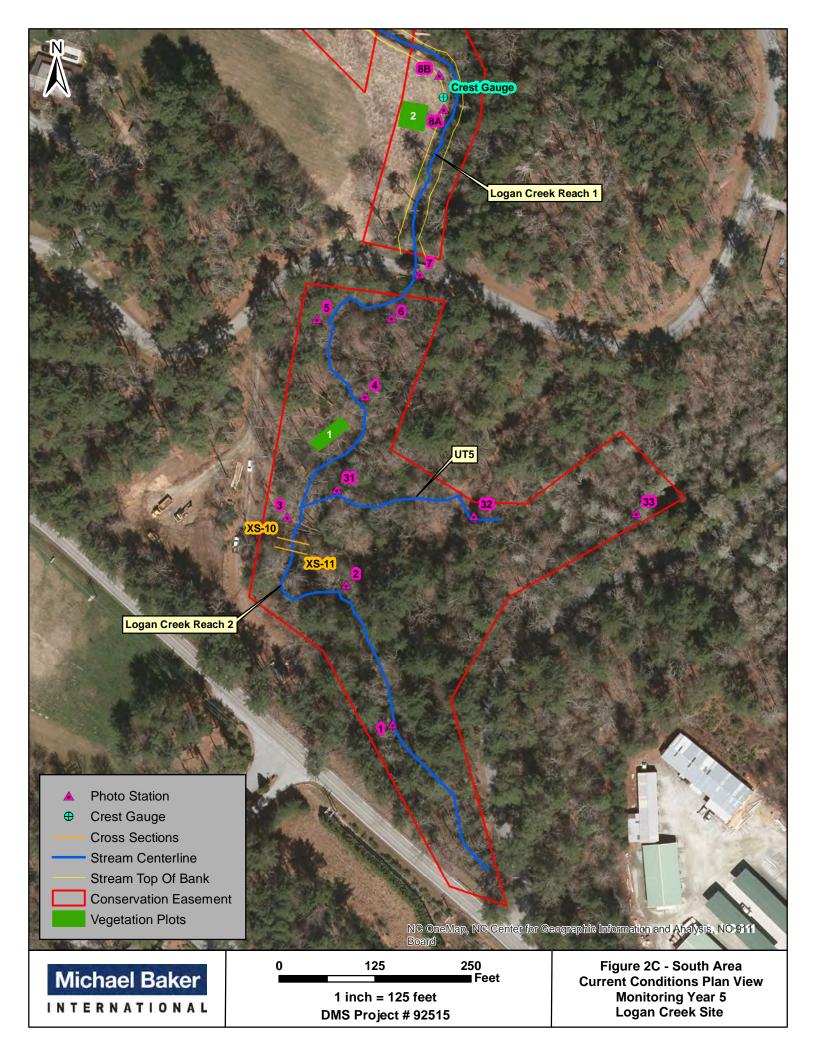
- Carolina Vegetation Survey (CVS) and NC Ecosystem Enhancement Program (NCEEP). 2007. CVS-NCEEP Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC.
- Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1.
- Harman, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Cantrell, M. Clemmons, G.D. Jennings, D.R.
 Clinton, J.M. Patterson. 2000. Bankfull Regional Curves for North Carolina Mountain Streams. In:
 AWRA Conference Proceedings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in Extreme Environments. Anchorage, Alaska.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2008. Savannah River Basin Restoration Priorities. December 2008.
 - $https://files.nc.gov/ncdeq/Mitigation\%20 Services/Watershed_Planning/Savannah_River_Basin/Savannah_RBRP_hcb_22 dec08.pdf$


- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Guidance and Content Requirements for EEP Monitoring Reports Version 1.2.1. December 1, 2009.
- NC Wetland Functional Assessment Team (WFAT). 2010. North Carolina Wetland Assessment Manual (NC WAM) User Manual, Version 4.1. Dated October 2010.
- NC Wetlands Restoration Program (NCWRP). 2001. Watershed Restoration Plan for the Savannah River Basin.
- Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199.
- Schafale, M. P., and A. S. Weakley. 1990. Classification of the natural communities of North Carolina, third approximation. North Carolina Natural Heritage Program. Division of Parks and Recreation, NCDENR. Raleigh, NC.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.


Appendix A


Project Vicinity Map and Background Tables


Includes:


- Figure 1. Project Vicinity Map and Directions
- Figure 2. Current Condition Plan View (CCPV) MY5, Overview Map
- Figure 2A. CCPV MY5, North Area
- Figure 2B. CCPV MY5, Middle Area
- Figure 2C. CCPV MY5, South Area

Appendix B

General Project Tables

Includes:

Table 1. Project Components and Mitigation Credits

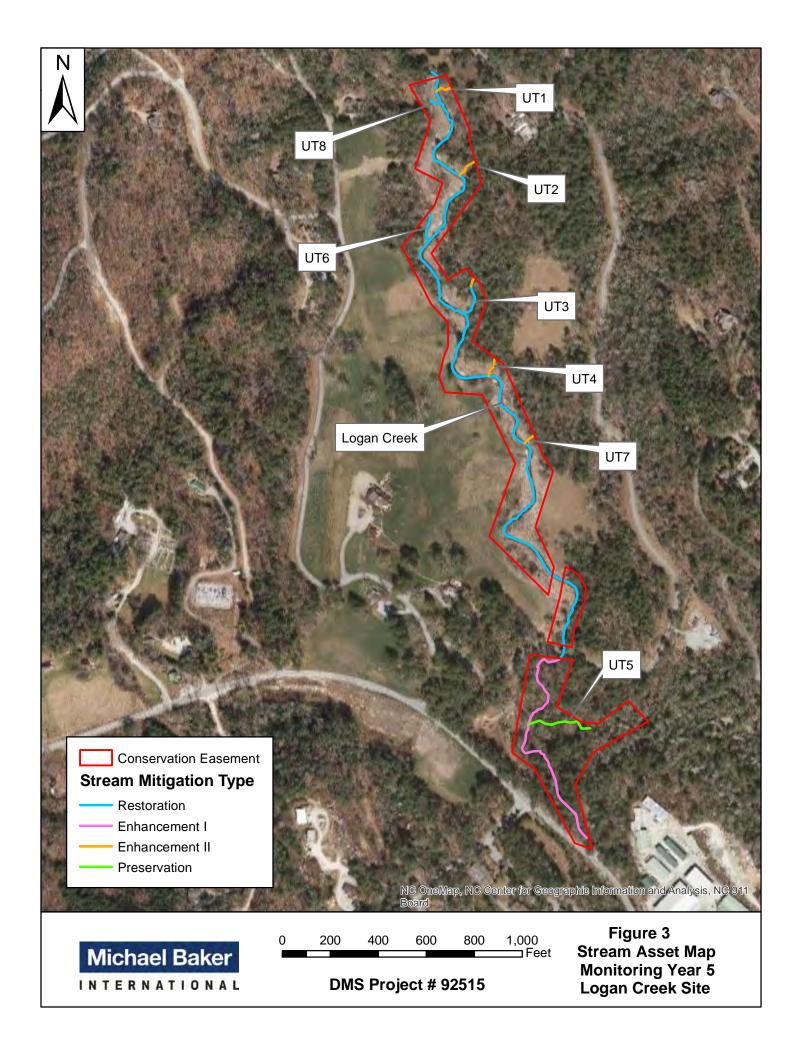

Figure 3. Project Asset Map

Table 2. Project Activity and Reporting History

Table 3. Project Contacts

Table 4. Project Attributes

	reek Restora	·				gation Cred	its				
		Stre	eam		Riparian Wetland	Non-	riparian W	etland	Buffer	Nitrogen Nutrient Offset	Phosphoru Nutrient Offset
Type	R	EI	EII	P							
Totals	3,441 SMU	692 SMU	136 SMU	58 SMU							
					Projec	ct Compone	ents		<u> </u>	T	
	Component Leach ID	Stati	ioning/ Loca	ntion	Existing :	U	Арр	roach	Restoration/ Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio
STREAM					1				1		•
₋ogan C											
	Reach 1 0+00 to 31+84				3134			ation - PI	3,131 SMU	3,131 LF	1:1
·= 4	Reach 2	2 32+43 to 42+81 1038 LF 0+00 to 0+71 71 LF						cement I	692 SMU	1,038 LF	1.5:1
JT1 JT2								ement II	28 SMU	71 LF	2.5:1
JT3		U)+00 to 0+9	2	92 1	LF	Ennand	ement II	37 SMU	92 LF	2.5:1
113	Reach 1)+00 to 0+4	0	40	l F	Enhanc	ement II	16 SMU	40 LF	2.5:1
	Reach 2		0+40 to 1+7		138			ation - PI	138 SMU	138 LF	1:1
JT4)+00 to 0+8		84 1			ement II	34 SMU	84 LF	2.5:1
JT5		C)+00 to 2+8	7	290	LF	Prese	rvation	58 SMU	290 LF	5:1
JT6)+00 to 1+2		127		Restora	ation - PI	127 SMU	127 LF	1:1
JT7)+00 to 0+5		54 1			ement II	21 SMU	54 LF	2.5:1
JT8		C)+00 to 0+4	5	45	LF	Restora	ition - P1	45 SMU	45 LF	1:1
					Compo	nent Summ	ation				
F	Restoration L	evel	Stream	m (LF)	Ripari	ian Wetland	l (AC)	_	rian Wetland (AC)	Buffer (SF)	Upland (A0
	Restoration	1	3,	141							
	Enhancemen		,	038							
	Enhancement	t II	3	41							
	Creation		_	00							
TT' 1	Preservation Quality Preservation		2	90							
High	Quanty Prese	ervation			RM	 IP Element:	2				
lement		Location	Purpose/Fu	nction	DIVI	Notes	,				

Table 2. Proj	ect Activity and Reporting History
Logan Creek	Restoration Project: DMS Project ID No. 92515

Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Mitigation Plan Prepared	Jun-07	06-07	Apr-08
Mitigation Plan Amended	Apr-13	N/A	May-13
Mitigation Plan Approved	N/A	N/A	Jun-13
Final Design – (at least 90% complete)	N/A	N/A	May-13
Construction Begins	N/A	N/A	Jun-14
Temporary S&E mix applied to entire project area	N/A	N/A	Jan-15*
Permanent seed mix applied to entire project area	N/A	N/A	Jan-15*
Planting of bare root trees and live stakes	N/A	N/A	Jan-15*
End of Construction	N/A	N/A	May-15**
Survey of As-built conditions (Year 0 Monitoring-baseline)	N/A	Mar-15	Aug-15
As-Built Baseline Report	N/A	Apr-15	Nov-15
Year 1 Monitoring	N/A	Mar-16	Apr-16
Year 2 Monitoring	Dec-16	Nov-16	Dec-16
Flood repair of piping, scour repair (hand tools)			May-17
Invasive Vegetation Control			Jul-17
Minor bank scour repair and add live stakes (hand tools)			Oct-17
Year 3 Monitoring	Dec-17	Oct-17	Dec-17
Trail relocations done			Apr-18
Year 4 Monitoring	Dec-18	Oct-18	Nov-18
Added livestakes and trees to old trail, treated invasive veg			May-19
Treated invasive veg.			Aug-19
Year 5 Monitoring	Dec-19	Oct-18	Mar-20
Beavers and dams removed by landowner			Nov-Dec, 20
Repaired piping of log structure on UT-8			Feb-20

^{*} Began seeding with the start of construction June, 2014 and site was seeded multiple times with a final entire area overseeding at the time the bare root trees were planted.

^{**} Construction of the majority of the site was completed by November 1, 2014 after a 2 week extension of the trout moratorium. The Enhancement Reach was done after April 15, 2015 (when Trout Moratorium ends) and was completed by May 12, 2015.

Table 3. Project Contacts	
Logan Creek Restoration Project: DMS Project	ID No. 92515
Designer	
Michael Deleas Espisación a Luc	797 Haywood Rd Suite 201
Michael Baker Engineering, Inc.	Asheville, NC 28806
	Contact:
	Micky Clemmons, Tel. 828-412-6100
Construction Contractor	
Divon Works Inc	6105 Chapel Hill Road
River Works, Inc.	Raleigh, NC 27607
	Contact:
	Stephen Carroll, Tel. 919-428-8368
Planting Contractor	
River Works, Inc.	6105 Chapel Hill Road
River works, flic.	Raleigh, NC 27607
	Contact:
	Stephen Carroll, Tel. 919-428-8368
Seeding Contractor	
River Works, Inc.	6105 Chapel Hill Road
River works, me.	Raleigh, NC 27607
	Contact:
	Stephen Carroll, Tel. 919-428-8368
Seed Mix Sources	Green Resources (seed), Tel. 336-855-6363
Nursery Stock Suppliers	ArborGen Inc. (trees), 843-528-3204
	Dykes and Son (trees), 931-668-8833
Maritanian Darfamana	
Monitoring Performers	797 Haywood Rd Suite 201
Michael Baker Engineering, Inc.	Asheville, NC 28806
	Contact:
Stream and Vegetation Monitoring	Micky Clemmons, Tel. 828-412-6100
Monitoring Surveyor	Kee Mapping and Surveying P.O. Box 2566
	Asheville, NC 28802
	Contact: Brad Kee, License #C-3039; Phone: 828-575-9021

County Jack County Jack Project Area (acres) 12.7 Project Coordinates (latitude and longitude) Lati Physiographic Province Blue River Basin Sav JSGS Hydrologic Unit 8-digit and 14-digit DWR Sub-basin Kee Project Drainage Area (AC) Minum Minum Minum Minum Minum Project Drainage Area Percentage of Minum Min	tude 35.132803° Longitude Watershed Summary Bridge Ridge Gold 17 03060101010020 wee River: 0306010101 nstem 1353.5 at beginning to 5 = 128.	-83.061046° ty Information o 1714 at end, UT1, UT4, UT6, UT7 Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%)	UT3 R1 R2 40 138 II 32
County Jack County Jack Project Area (acres) 12.7 Project Coordinates (latitude and longitude) Lati Physiographic Province Blue River Basin Sav JSGS Hydrologic Unit 8-digit and 14-digit O30 DWR Sub-basin Kee Project Drainage Area (AC) UT: Project Drainage Area (AC) Wait Project Drainage Area Percentage of Impervious Area USGA Land Use Classification USGA Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification Machinery Trend Juderlying Mapped Soils Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation Parameters Length of Reach (LF) Lati Lati Physiographic Province Lati Lati Lati Lati Lati Lati Lati Lati	Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E Watershed Summary Watershed Summary Watershed Summary Watershed Summary Watershed Summary Watershed Summary Watershed Watershed Summary Watershed	Deciduous Forest (76%)	UT3 R1 R2 40 138 II 32
Project Area (acres) Project Coordinates (latitude and longitude) Project Drainage Area USGS Hydrologic Unit 8-digit and 14-digit OWR Sub-basin Project Drainage Area (AC) Project Drainage Area Percentage of Interpretation Area UTS Project Drainage Area Percentage of Interpretation Area USGA Land Use Classification NCDMS Land Use Classification INCDMS Land Use Classification for this Hydrologic Unit Interpretation Area Parameters Interpretation Area Interpretation Ar	To tude 35.132803° Longitude Watershed Summary Rindah Rindah River Basin 60101 / 03060101010020 Wee River: 0306010101 Instem 1353.5 at beginning to 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%)	UT3 R1 R2 40 138 II 32
Project Coordinates (latitude and longitude) Project Coordinates (latitude and longitude) Blue River Basin Sav Sub Sag Shydrologic Unit 8-digit and 14-digit SWR Sub-basin Project Drainage Area (AC) Project Drainage Area (AC) Mai UT: Project Drainage Area Percentage of Impervious Area USGA Land Use Classification USGA Land Use Classification Parameters Length of Reach (LF) Valley Classification (Rosgen) Orainage Area (AC) INCDWR Stream Identification Score INCDWR Stream Identification Score INCDWR Water Quality Classification Incomposity of Percent Composition (Rosgen) Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation Parameters Length of Reach (LF) Mixed Parameters Length of Reach (LF) Author Status Average Channel Slope (ft/ft) TEMA Classification Mixed Parameters Length of Reach (LF)	Tude 35.132803° Longitude Watershed Summary e Ridge annah River Basin 60101 / 03060101010020 wee River: 0306010101 nstem 1353.5 at beginning to 5 = 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%)	UT3 R1 R2 40 138 II 32
Physiographic Province River Basin Sav JSGS Hydrologic Unit 8-digit and 14-digit O30 DWR Sub-basin Project Drainage Area (AC) Project Drainage Area (AC) Project Drainage Area Percentage of Interpretation of Main of	Watershed Summary e Ridge annah River Basin 60101 / 03060101010020 wee River: 0306010101 nstem 1353.5 at beginning to 5 = 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%)	UT3 R1 R2 40 138 II 32
River Basin Sav JSGS Hydrologic Unit 8-digit and 14-digit OWR Sub-basin Project Drainage Area (AC) Project Drainage Area Percentage of mpervious Area UT? JSGA Land Use Classification NCDMS Land Use Classification for this hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification North March Status North March March Status North March Mar	E Ridge annah River Basin 60101 / 03060101010020 wee River: 0306010101 instem 1353.5 at beginning to 5 = 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3.134 VIII 1.557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
River Basin Sav JSGS Hydrologic Unit 8-digit and 14-digit OWR Sub-basin Project Drainage Area (AC) Project Drainage Area Percentage of mpervious Area UT? JSGA Land Use Classification NCDMS Land Use Classification for this hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification Morphologican Description (Rosgen Stream Indentification Score) NCDWR Stream Identification Score NCDWR Water Quality Classification North March Status North March March Status North March Mar	annah River Basin 60101 / 03060101010020 wee River: 0306010101 stem 1353.5 at beginning to s = 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
JSGS Hydrologic Unit 8-digit and 14-digit DWR Sub-basin Project Drainage Area (AC) Project Drainage Area (AC) Project Drainage Area Percentage of mpervious Area JSGA Land Use Classification NCDMS Land Use Classification for this hydrologic Unit Parameters Length of Reach (LF) Alley Classification (Rosgen) Trainage Area (AC) NCDWR Stream Identification Score NCDWR Stream Identification Score NCDWR Stream Identification Score NCDWR Water Quality Classification Normanage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Areameters Length of Reach (LF) Poc Parameters Length of Reach (LF)	Forest (91%) Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
DWR Sub-basin Kec Project Drainage Area (AC) Project Drainage Area (AC) Project Drainage Area Percentage of mpervious Area UT: Project Drainage Area Percentage of mpervious Area USGA Land Use Classification NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification NUMBER OF THE MARKET STATE OF THE MARKET STATE S	wee River: 0306010101 nstem 1353.5 at beginning to 5 = 128. Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
Project Drainage Area (AC) Project Drainage Area Percentage of mpervious Area UT: Project Drainage Area Percentage of mpervious Area USGA Land Use Classification NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (C) NCDWR Stream Identification Score NCDWR Water Quality Classification (NOSWEN) NCDWR Stream Identification Score NCDWR Water Quality Classification (NOSWEN) NOTION (NOSWEN) Valley Classification NOTION (NOSWEN) Portional Stream Identification Score NCDWR Water Quality Classification (NOSWEN) NOTION (NOSWEN) Portional Stream Identification Score NCDWR Water Quality Classification (NOSWEN) NOTIONAL (NOSWEN) Portional Stream Identification (NOSWEN) Portional Stream Identification (NOSWEN) Portional Stream Identification (NOSWEN) Portional Stream Identification (NOSWEN) Notional Stream Identification (NOSWEN) NOSWEN IDENTIFICATION (NOSWEN) Portional Stream Identification (NOSWEN) Portional Stream Identification (NOSWEN) Portional Stream Identification (NOSWEN) NOSWEN IDENTIFICATION (NOSWEN) Portional Stream Identification (NOS	Forest (91%)	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
Parameters Length of Reach (LF) Valley Classification (Rosgen) Praimage Area (AC) NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification (Rosgen) Drainage Area (AC) NCDWR Water Quality Classification (Rosgen) Propositionary Trend Underlying Mapped Soils Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Deciduous Forest (76%) Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	UT3 R1 R2 40 138 II 32
Project Drainage Area Percentage of mpervious Area USGA Land Use Classification NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Stream Identification Score NCDWR Water Quality Classification morphological Description (Rusgen Stream) Evolutionary Trend Underlying Mapped Soils Drainage Class Orainage Class Orainage Channel Slope (ft/ft) EMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
mpervious Area JSGA Land Use Classification NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Jalley Classification (Rosgen) Paramage Area (AC) NCDWR Stream Identification Score NCDWR Stream Identification Score NCDWR Water Quality Classification for this seven propriety and propriety of the proprie	Forest (91%) Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
USGA Land Use Classification NCDMS Land Use Classification for this Hydrologic Unit Parameters Length of Reach (LF) Valley Classification (Rosgen) Oratinage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification Propriority Trend Underlying Mapped Soils Oratinage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach I 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Evergreen Forest (8%) Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Identifica	Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach I 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Pasture Land (4.6%) Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Parameters Length of Reach (LF) Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Score NCDWR Water Quality Classification North March (Not Stream Identification Identifica	Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach I 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Shrub (1%) Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Advance Channel Slope (ft/ft) Tempth of Status Average Channel Slope (ft/ft)	Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach I 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Advance Channel Slope (ft/ft) Tempth of Status Average Channel Slope (ft/ft)	Developed (6%) Agriculture (1.5%) Stream Reach Summa Mainstem - Reach I 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Other (.5%) ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Advance Channel Slope (ft/ft) Tempth of Status Average Channel Slope (ft/ft)	Agriculture (1.5%) Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	ry Information Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Parameters Length of Reach (LF) Valley Classification (Rosgen) Orainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification Propriority Trend Underlying Mapped Soils Orainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Stream Reach Summa Mainstem - Reach 1 3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Length of Reach (LF) Valley Classification (Rosgen) Oraniange Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NOT printing Control (NOSgen Sucanna Control printing Control Pr	3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	Mainstem - Reach 2 1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Length of Reach (LF) Valley Classification (Rosgen) Oraniange Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NOT printing Control (NOSgen Sucanna Control printing Control Pr	3,134 VIII 1,557 52.5 C; TR: +HQW C-E C→E	1,038 VIII 1,714 52.5	R1 R2 40 138 II 32
Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NOTOPHONIC RESIDENTIFICATION (NOSGEN SUCCEEDING) Propositionary Trend Underlying Mapped Soils Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	VIII 1,557 52.5 C; TR: +HQW C-E C→E	VIII 1,714 52.5	40 138 II 32
Valley Classification (Rosgen) Drainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NOTOPHONIC RESIDENTIFICATION (NOSGEN SUCCEEDING) Propositionary Trend Underlying Mapped Soils Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	VIII 1,557 52.5 C; TR: +HQW C-E C→E	VIII 1,714 52.5	II 32
Orainage Area (AC) NCDWR Stream Identification Score NCDWR Water Quality Classification NCDWR Water Quality Classification NCDWR Water Quality Classification NCDWR Water Quality Classification Northophological Description (NOSgert Stream) Northophologi	1,557 52.5 C; TR: +HQW C-E C→E	1,714 52.5	32
NCDWR Stream Identification Score NCDWR Water Quality Classification Wordpring Description (Rusger Stream) Bevolutionary Trend Underlying Mapped Soils Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) FEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation Parameters Length of Reach (LF)	52.5 C; TR: +HQW C-E C→E	52.5	
NCDWR Water Quality Classification Native Vegetation Community Nercent Composition of Exotic/Invasive Negetation Negetation New Yegetation New Yegetati	C; TR: +HQW C-E C→E		
Drainage Class Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) FEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	C-E C→E	C· TR· ±HOW	41.5
Drainage Class Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) FEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	C→E		C; TR: +HQW
Underlying Mapped Soils Programage Class Soil Hydric Status Average Channel Slope (ft/ft) EMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)		C-E	В
Drainage Class Drainage Class Soil Hydric Status Average Channel Slope (ft/ft) TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	NkA	C→E	В
Orannage Class Soil Hydric Status Average Channel Slope (ft/ft) FEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)		SaC	NkA, SaC
Soil Hydric Status Average Channel Slope (ft/ft) EMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	orly drained to very poorly	Very deep, well drained, mod	Somewhat poorly to well drain
Average Channel Slope (ft/ft) FEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	drained soils	permeable soils	* *
TEMA Classification Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Non-Hydric 0.004	Non-Hydric 0.007	Site-specific 0.012
Native Vegetation Community Percent Composition of Exotic/Invasive Vegetation ² Parameters Length of Reach (LF)	Zone AE	Zone AE	None
Parameters Length of Reach (LF)	ed Forested/Rhododendron	Mixed Forested/Rhododendron	Mixed Forested/Rhododendron
Vegetation ² Parameters Length of Reach (LF)	and grassland	and grassland	and grassland
Vegetation ² Parameters Length of Reach (LF)	and Brassand	una grassiana	und grussiand
Parameters Length of Reach (LF)	<1%	<1%	<1%
Length of Reach (LF)	UT3	UT6	6 other small UTs in R1
	R1 R2	010	o other small O Is in Ki
	40 138	127	45 - 127
	II	II	II
Orainage Area (AC)	32	32	.02 to .04
NCDWR Stream Identification Score	41.5	41.5	40.5 - 32.5
	C; TR: +HQW	C; TR: +HQW	C; TR: +HOW
NCDWR Water Quality Classification	В	В	E - B
Evolutionary Trend	В	В	$B \rightarrow C \rightarrow E$
Jnderlying Mapped Soils	NkA, SaC	NkA. SaC	NkA, SaC
	*		,
Orainage Class Some	what poorly to well drained	Somewhat poorly to well drained	Somewhat poorly to well drain
Soil Hydric Status	Site-specific	Site-specific	Site-specific
Average Channel Slope (ft/ft)	0.012	0.012	0.0134 (UT6)
FEMA Classification	None	None	None
Native Vegetation Community Mixe	ed Forested/Rhododendron	Mixed Forested/Rhododendron	Mixed Forested/Rhododendron
	and grassland	and grassland	and grassland
Percent Composition of Exotic/Invasive	<1%	<1%	<1%
Vegetation ²	\1/0	~1 70	1 70
	Regulatory Consi	derations	
Regulation	Applicable	Resolved	Supporting Documentation
Waters of the United States – Section 404	Yes	Yes	Permit: Action ID #2008-0171
Waters of the United States – Section 401	Yes	Yes	Permit: WQC #3885
Endangered Species Act	No	Yes	Categorical Exclusion
Historic Preservation Act	No	Yes	Categorical Exclusion
Coastal Zone Management Act (CZMA)/	No	N/A	N/A
Coastal Area Management Act (CAMA)			
FEMA Floodplain Compliance	Yes	No-Rise	Certification, June 27, 2016
Essential Fisheries Habitat		N/A	N/A

MICHAEL BAKER ENGINEERING, INC. MONITORING YEAR 5 LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Appendix C

Vegetation Assessment Data

Includes:

Table 5	Vegetation Plot Mitigation Success Summary
Table 6	CVS Vegetation Metadata
Table 7	Stem Count Arranged by Plot and Species
Figure 4	Vegetation Monitoring Plot Photos
Figure 4.1	Trail Relocation Photos - MY5
Table 7.1	Vegetative Problem Areas (e-file)
Table 7.2	Vegetation Condition Assessment at Logan
	Creek (e-file)

Table 5. Vegetation Plot Mitigation													
	Success Si	ummary (2019,	MY5)										
	Stream/												
	Wetland			Success									
Plot #	Stems ¹	Volunteers ²	Total ³	Criteria Met?									
1	647	81	728	Yes									
2	364	364 283 647 Yes											
3	405 526 931 Yes												
4	526	526 243 769 Yes											
5	850	850 971 1821 Yes											
6	607 1133 1740 Yes												
7	890 0 890 Yes												
8	526	526 0 526 Yes											
Project Avg	602	405	1,007	Yes									
Stem Class	Characteristics												
¹ Stream/ Wetland	Native planted v	woody stems. In	cludes shrubs,	does NOT									
Stems	include live stak	es. No vines											
² Volunteers	Native woody st	tems. Not plante	d. No vines.										
³ Total	Planted + volun	teer native wood	y stems. Includ	des live stakes.									
iotai	Excl. exotics. Ex	ccl. vines.											
This color indicates	that the number	includes volunte	er stems										
Indicates that the st	ems per acre ex	ceeds requiremen	nts by 10%										
Indicates that the st	ems per acre ex	ceeds requiremen	nts, but by less	than 10%									

Table 6. Vegetation Metadata

Logan Creek Stream and Restoration Project - Project #92515

Report Prepared By Holland Youngman

Date Prepared 11/1/2019 14:05

database name 92515_Logan_cvs-eep-entrytool-v2.3.1_MY5.mdb

database location L:\projects\109243 - Logan Creek\Monitoring\YR5 Monitoring\2.0 -

Monitoring Data\App C - Vegetation\Veg Data

computer name ASHELHYOUNGMAN

file size 45764608

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Description of database file, the report worksheets, and a summary of

project(s) and project data.

Each project is listed with its PLANTED stems per acre, for each year.

This excludes live stakes.

Proj, total stems

Each project is listed with its TOTAL stems per acre, for each year. This

includes live stakes, all planted stems, and all natural/volunteer stems.

Plots List of plots surveyed with location and summary data (live stems, dead

stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots.

Vigor by Spp Frequency distribution of vigor classes listed by species.

List of most frequent damage classes with number of occurrences and Damage

percent of total stems impacted by each.

Damage by SppDamage values tallied by type for each species.Damage by PlotDamage values tallied by type for each plot.

Planted Stems by Plot and Spp

A matrix of the count of PLANTED living stems of each species for each

plot; dead and missing stems are excluded.

A matrix of the count of total living stems of each species (planted and

ALL Stems by Plot and spp natural volunteers combined) for each plot; dead and missing stems are

excluded.

PROJECT SUMMARY-----

Project Code 92515 project Name Logan Creek

This Project will restore or enhance 4823 linear feet (LF) of stream

along Logan Creek.

River Basin Savannah length(ft) 5110 stream-to-edge width (ft) 30 area (sq m) 28481.19 Required Plots (calculated) 8 Sampled Plots 8

Table 7. Stem Count Arranged by Plot

Project: Logan Creek, DMS Project 392515

												Current F	Plot Data (N	/IY5 2019)									
			9	2515-01-00	001	9	92515-01-00	02	92	2515-01-00	03	9	2515-01-00	04	92	2515-01-00	05	9:	2515-01-00	06	9:	2515-01-000	07
Scientific Name	Common Name	Species Type	P	V	Т	Р	V	T	Р	V	T	Р	V	T	P	٧	T	Р	V	Т	Р	٧	Т
Alnus serrulata	hazel alder	Shrub				3		3	6	10	16	2		2	7		7	3		3	6		6
Betula nigra	river birch	Tree							1		1	3		3	3		3	1		1	1	1	1
Diospyros virginiana	common persimmon	Tree				1		1				1		1	4		4	1		1	5		5
Fraxinus pennsylvanica	green ash	Tree				1		1	1		1	4	1	5	2		2	8		8	3		3
Hamamelis virginiana	American witchhazel	Tree	5	2	7																		
Leucothoe fontanesiana	highland doghobble	Shrub																				1	
Lindera benzoin	northern spicebush	Shrub	2		2																	1	
Liriodendron tulipifera	tuliptree	Tree				1	7	8		3	3	1	5	6		24	24	1	28	29	4	1	4
Nyssa sylvatica	blackgum	Tree							2		2				2		2				1	1	1
Oxydendrum arboreum	sourwood	Tree																					
Pinus strobus	eastern white pine	Tree																					
Quercus alba	white oak	Tree				3		3				1		1	2		2						
Quercus rubra	northern red oak	Tree										1		1	1		1	1		1	2		2
Robinia pseudoacacia	black locust	Tree																					
Sambucus canadensis	Common Elderberry	Shrub																				1	
Unknown	,	Shrub or Tree																				1	
Viburnum dentatum	southern arrowwood	Shrub	9		9																	1	
	•	Stem count	16	2	18	9	7	16	10	13	23	13	6	19	21	24	45	15	28	43	22	0	22
		size (ares)		1	•		1	•		1	•		1	*		1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	3	1	3	5	1	5	4	2	5	7	2	7	7	1	8	6	1	6	7	0	7
		Stems per ACRE	647	81	728	364	283	647	405	526	931	526	243	769	850	971	1821	607	1133	1740	890	0	890
P = Planted		This color indicates th	at the num	hor includo	c voluntoor i	tome																	

V = Volunteer T = Total

This color indicates that the number includes volunteer stems

Indicates that the stems per acre exceeds requirements by 10%

Indicates that the stems per acre exceeds requirements, but by less than 10%

Table 7. Stem Count Arranged by Plot, continued

			Current	Piot Data (iv	1Y5 2019)							-	Annual Mea	ns									
			9:	2515-01-00	08		MY5 (2019)		ı	VIY4 (2018)			MY3 (2017)		MY2 (2016)		MY1 (2015)	*		MY0 (2015)	*
Scientific Name	Common Name	Species Type	Р	V	T	Р	V	T	Р	V	T	Р	٧	Т	Р	V	T	Р	V	T	P	٧	Т
Alnus serrulata	hazel alder	Shrub	5		5	32	10	42	32	10	42	32	25	57	32	30	62	32		32	33		33
Betula nigra	river birch	Tree	2		2	11		11	12		12	11		11	12		12	11		11	13		13
Diospyros virginiana	common persimmon	Tree	1		1	13		13	16		16	16		16	18		18	20		20	24		24
Fraxinus pennsylvanica	green ash	Tree	2		2	21	1	22	22		22	22		22	23		23	24		24	24		24
Hamamelis virginiana	American witchhazel	Tree				5	2	7	5		5	7		7	9		9	11		11			
Leucothoe fontanesiana	highland doghobble	Shrub										1		1	3		3	3		3	4		4
Lindera benzoin	northern spicebush	Shrub				2		2	2		2	2		2	2		2	2		2			
Liriodendron tulipifera	tuliptree	Tree	2		2	9	67	76	11	65	76	10	35	45	9	55	64	11		11	17		17
Nyssa sylvatica	blackgum	Tree	1		1	6		6	6		6	7		7	8		8	9		9	20		20
Oxydendrum arboreum	sourwood	Tree														2	2						
Pinus strobus	eastern white pine	Tree														14	14						
Quercus alba	white oak	Tree				6		6	6		6	7		7	7		7	6		6	6		6
Quercus rubra	northern red oak	Tree				5		5	9		9	9		9	10		10	12		12	13		13
Robinia pseudoacacia	black locust	Tree														1	1						
Sambucus canadensis	Common Elderberry	Shrub																	1	1			
Unknown		Shrub or Tree																			7		7
Viburnum dentatum	southern arrowwood	Shrub				9		9	11		11	11		11	11		11	11		11	9		9
•		Stem count	13	0	13	119	80	199	132	75	207	135	60	195	144	102	246	152	1	153	170	0	170
		size (ares)		1			8			8			8			8			8			8	
		size (ACRES)		0.02			0.20			0.20			0.20			0.20			0.20			0.20	
		Species count	6	0	6	11	4	11	11	2	11	12	2	12	12	5	15	12	1	13	11	0	11
		Stems per ACRE	526	0	526	602	405	1007	668	379	1047	683	304	986	728	516	1244	769	5	774	860	0	860

This color indicates that the number includes volunteer stems P = Planted V = Volunteer

Indicates that the stems per acre exceeds requirements by 10%

T = Total Indicates that the stems per acre exceeds requirements, but by less than 10/0
*MYO was completed in spring 2015 after the trout moratorium, MY1 data was collected after the growing season in the winter 2015. This corrects an inaccurate date show on previous reports.

Figure 4. Vegetation Monitoring Plot Photos DMS Project #92515

Photo 1. Vegetation Plot 1 – Tree photo (October 23, 2019).

Photo 2. Vegetation Plot 1 – Herbaceous photo (October 23, 2019).

Photo 3. Vegetation Plot 2 – Tree photo (October 23, 2019).

Photo 4. Vegetation Plot 2 – Herbaceous photo (October 23, 2019).

Photo 5. Vegetation Plot 3 – Tree photo (October 23, 2019).

Photo 6. Vegetation Plot 3 – Herbaceous photo (October 23, 2019).

Logan Creek Site - Vegetation Plot Photos, DMS Project #92515 - continued

Photo 7. Vegetation Plot 4 – Tree photo (October 23, 2019).

Photo 8. Vegetation Plot 4 – Herbaceous photo (October 23, 2019).

Photo 9. Vegetation Plot 5 – Tree photo (October 23, 2019).

Photo 10, Vegetation Plot 5 – Herbaceous photo (October 23, 2019).

Photo 11. Vegetation Plot 6 – Tree photo (October 23, 2019).

Photo 12. Vegetation Plot 6 – Herbaceous photo (October 23, 2019).

Logan Creek Site - Vegetation Plot Photos, DMS Project#92515 - continued

Photo 13. Vegetation Plot 7 – Tree photo (October 23, 2019).

Photo 14. Vegetation Plot 7 – Herbaceous photo (October 23, 2019).

Photo 15. Vegetation Plot 8 – Tree photo (October 23, 2019).

Photo 16. Vegetation Plot 8 – Herbaceous photo (October 23, 2019).

Figure 4.1 Trial Relocation Photos – MY5 DMS Project#92515

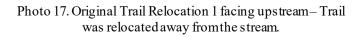


Photo 18. Updated Conditions Trail Relocation 1 facing upstream—Trail was relocated away from stream.

Table 7.1 Vegetative Problem Areas MY5										
Feature Category	Station #/Range	Probable Cause	Photo #							
Bare Bank	None									
Bare Bench	None									
Bare Flood Plain	None									
Invasive /Exotic Populations	None									

Table 7.2 Vegetation Condition Assessment

Planted Acreage ¹	7.49					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	Pattern and Color	0	0.00	0.0%
Total						0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	Pattern and Color	0	0.00	0.0%
	0	0.00	0.0%			
Easement Acreage ²	12.71					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern⁴	None	1000 SF	Pattern and Color	0	0.00	0.0%
5. Easement Encroachment Areas ³	There was one Encroachment Area (EA-1) noted in 2016 along the nature trail, in the area of stations 23+00 to 28+00. A new maintenance staff person had the nature trail mowed; however, a wider area was mowed than we verbally agreed should be maintained. The width was 10-12 feet wide, while we had agreed to a width of 4-6 feet wide, which approximates the width of the previously existing nature trail. We discussed this with staff at Lonesome Valley and they agreed to address this issue with the trail maintenance staff, and to be sure they know the proper width for future maintenance. During MY5 monitoring, it was noted that the trail is now being mowed at the appropriate width of 4-6 feet, and runs adjacent to but does not encroach upon the neighboring vegetation plot.		Light Blue	2	0.014	0.11%

^{1 =} Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

^{2 =} The acreage within the easement boundaries.

^{3 =} Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

^{4 =} Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spices are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low moderate concern group are those species that generally do not have this capacity, over the timeframes discussed and therefore are not expected to be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or distribution is suppressing the viability density or distribution or suppressions. The lower remains the process of the lower remains the lower the

Appendix D

Stream Assessment Data

Includes:

Figure:	5.	Stream	Photos	bv	Channel	and	Station
115010	<i>-</i> •	Ducuiii	11000	\sim	CHAINICI	alla	Dialion

- Table 8. Visual Morphological Stability Assessment
- Table 9. Verification of Bankfull or Greater than Bankfull Events
- Figure 6. Cross-Sections with Annual Overlays
- Figure 7. Longitudinal Profiles with Annual Overlays
- Figure 8. Pebble Count Plots with Annual Overlays
- Table 10. Monitoring Year 5 Stream Summary
- Table 11. Morphology and Hydraulic Monitoring Summary
- Table 12. MY5 Stream Problem Areas and Photos (e-file)

Figure 5. Logan Creek Stream Restoration project
Photo Points - Monitoring Year 5, (Stationing is approximate)

Photo 1. Logan Creek Photo Point 1 – Station 40+45 (October 23, 2019) upstream view from right bank.

Photo 2. Logan Creek Photo Point 1 – Station 40+45 (October 23, 2019) downstream view from right bank.

Photo 3. Logan Creek Photo Point 2 – Station 38+60 (October 23, 2019) downstream view from left bank.

Photo 4. Logan Creek Photo Point 2 – Station 38+60 (October 23, 2019) upstream view from left bank.

Photo 5. Logan Creek Photo Point 3 – Station 36+75 (October 23, 2019) upstream view from right bank.

Photo 6. Logan Creek Photo Point 3 – Station 36+75 (October 23, 2019) downstream view from right bank.

Photo 7. Logan Creek Photo Point 4 – Station 34+80 (October 23, 2019) downstream from left bank.

Photo 8. Logan Creek Photo Point 4 – Station 34+80 (October 23, 2019) upstream from left bank.

Photo 9. Logan Creek Photo Point 5 – Station 33+60 (October 23, 2019) upstream from right bank.

Photo 10. Logan Creek Photo Point 5 – Station 33+60 (October 23, 2019) downstream from right bank.

Photo 11. Logan Creek Photo Point 6 – Station 32+70 (October 23, 2019) downstream view from left bank.

Photo 12. Logan Creek Photo Point 6 – Station 32+70 (October 23, 2019) upstream view from left bank.

Photo 13. Logan Creek Photo Point 7 – Station 32+15 (October 23, 2019) downstream view from bridge.

Photo 14. Logan Creek Photo Point 7 – Station 32+00 (October 23, 2019) upstream view from bridge.

Photo 15. Logan Creek Photo Point 8a – Station 29+75 (October 23, 2019) downstream view from right bank.

Photo 16. Logan Creek Photo Point 8b – Station 29+25 (October 23, 2019) upstream view from right bank.

Photo 17. Logan Creek Photo Point 9 – Station 26+75 (October 23, 2019) downstream view from left bank.

Photo 18. Logan Creek Photo Point 9 – Station 26+75 (October 23, 2019) upstream view from left bank.

Photo 19. Logan Creek Photo Point 10 – Station 25+25 (October 23, 2019) upstream view from right bank.

Photo 20. Logan Creek Photo Point 10 – Station 25+25 (October 23, 2019) downstream view from right bank.

Photo 21. Logan Creek Photo Point 11 – Station 23+20 (October 23, 2019) downstream view from left bank.

Photo 22. Logan Creek Photo Point 11 – Station 23+20 (October 23, 2019) upstream view from left bank.

Photo 23. Logan Creek Photo Point 12 – Station 21+20 (October 23, 2019) downstream view from left bank.

Photo 24. Logan Creek Photo Point 12 – Station 21+20 (October 23, 2019) upstream view from left bank.

Photo 25. UT7 Photo Point 13 – (October 23, 2019) upstream view from left bank.

Photo 26. UT7 Photo Point 13 – (October 23, 2019) downstream view from left bank.

Photo 27. Logan Creek Photo Point 14 – Station 19+45 (October 23, 2019) downstream view from left bank.

Photo 28. Logan Creek Photo Point 14 – Station 19+45 (October 23, 2019) upstream view from left bank.

Photo 29. Logan Creek Photo Point 15 – Station 17+45 (October 23, 2019) downstream view from left bank.

Photo 30. Logan Creek Photo Point 15 – Station 17+45 (October 23, 2019) upstream view from left bank.

Photo 31. UT4 Photo Point 16 – Station 0+40 (October 23, 2019) downstream view from left bank.

Photo 32. UT4 Photo Point 16 – Station 0+40 (October 23, 2019) upstream view from left bank.

Photo 33. Logan Creek Photo Point 17 – Station 15+50 (October 23, 2019) upstream view from right bank.

Photo 34. Logan Creek Photo Point 17 – Station 15+50 (October 23, 2019) downstream view from right bank.

Photo 35. Logan Creek Photo Point 18 – Station 12+90 (October 23, 2019) downstream view from left bank.

Photo 36. Logan Creek Photo Point 18 – Station 12+90 (October 23, 2019) upstream view from left bank.

Photo 37. UT3 Photo Point 19 – Station 00+60 (October 23, 2019) upstream from left bank.

Photo 38. UT3 Photo Point 19 – Station 00+60 (October 23, 2019) downstream from left bank.

Photo 39. UT3 Photo Point 19 – Station 00+60 (October 23, 2019) upstream from left bank to vernal pool.

Intentionally left blank.

Photo 40. Logan Creek Photo Point 20 – Station 10+60 (October 23, 2019) downstream view from left bank.

Photo 41. Logan Creek Photo Point 20 – Station 10+60 (October 23, 2019) upstream view from left bank.

Photo 42. Logan Creek Photo Point 21 – Station 9+40 (October 23, 2019) upstream view from right bank.

Photo 43. Logan Creek Photo Point 21 – Station 9+40 (October 23, 2019) downstream view from right bank.

Photo 44. UT6 Photo Point 22 – Station 0+75 (October 23, 2019) upstream view from right bank.

Photo 45. UT6 Photo Point 22 – Station 0+75 (October 23, 2019) downstream view from right bank.

Photo 46. Logan Creek Photo Point 23 – Station 7+70 (October 23, 2019) downstream view from left bank.

Photo 47. Logan Creek Photo Point 23 – Station 7+70 (October 23, 2019) upstream view from left bank.

Photo 48. Logan Creek, Photo Point 24 – Station 5+70 (October 23, 2019) downstream view from left bank.

Photo 49. Logan Creek, Photo Point 24 – Station 5+70 (October 23, 2019) upstream view from left bank.

Photo 50. UT2, Photo Point 25 – Station 0+65 (October 23, 2019) upstream view from left bank.

Photo 51. UT2, Photo Point 25 – Station 0+65 (October 23, 2019) downstream view from left bank.

Photo 52. Logan Creek, Photo Point 26 – Station 3+80 (October 23, 2019) upstream view from right bank.

Photo 53. Logan Creek, Photo Point 26 – Station 3+80 (October 23, 2019) downstream view from right bank.

Photo 54. Logan Creek, Photo Point 27 – Station 1+12 (October 23, 2019) upstream view from right bank.

Photo 55. Logan Creek, Photo Point 27 – Station 1+12 (October 23, 2019) downstream view from right bank.

Photo 56. UT8, Photo Point 28 – Station 1+10 (October 23, 2019) upstream view from right bank and confluence.

Photo 57. UT1, Photo Point 29 – Station 0+50 (October 23, 2019) view upstream and confluence.

Photo 58. Logan Creek, Photo Point 30 – Station 0+50 (October 23, 2019) upstream view from right bank.

Photo 59. Logan Creek, Photo Point 30 – Station 0+50 (October 23, 2019) downstream view from right bank.

Photo 60. UT5 - Preservation, Photo Point 31 – Station 1+80 (October 23, 2019) downstream view from midchannel to confluence.

Photo 61. UT5 - Preservation, Photo Point 31 – Station 1+80 (October 23, 2019) upstream view from midchannel to confluence.

Photo 62. UT5 - Preservation, Photo Point 32 – (October 23, 2019) downstream view from right bank.

Photo 63. UT5 - Preservation, Photo Point 32 – (October 23, 2019) upstream view from right bank.

Logan Creek	Stream Restoration Project: DMS Project ID No. 92515	494 LE) Bestevetien l	Danah			
	Logan Creek, Reach 1 (3,	184 LF), Restoration I	Reach		l	
		(# Otable) November		Tatal Normalism	0/ Danfannia	F+
Feature		(# Stable) Number Performing	Total number	Total Number / feet in unstable	% Performing in Stable	Feature Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	18	18	0	100	Wear or Tota
A. Killes	Armor stable (e.g. no displacement)?	18	18	0	100	
	Facet grades appears stable?	18	18	0	100	
	Minimal evidence of embedding/fining?	18	18	0	100	
	5. Length appropriate?	18	18	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	35	35	0	100	
	Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	35	35	0	100	
	3. Length appropriate?	35	35	0	100	100%
O The-b	4 11-4	400	400	0	400	
C. Thalweg	Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%)	100 100	100 100	0	100 100	100%
	2. Downstream of poor (structure) centering? (%)	100	100	U	100	100 /6
D. Meanders	Outer bend in state of limited/controlled erosion?	17	19	2	89	
	Of those eroding, # w/concomitant point bar formation?	19	19	0	100	
	3. Apparent Rc within spec?	19	19	0	100	
	Sufficient floodplain access and relief?	19	19	0	100	97%
E. Bed	General channel bed aggradation areas (bar formation)	3,184	3,184	0	100	
General	Channel bed degradation - areas of increasing down-			_		
	cutting or head cutting?	3,184	3,184	0	100	100%
E Vanos	1. Eroo of hook or arm coour?	24	24	0	100	
F. Vanes, Rock/Log	Free of back or arm scour? Height appropriate?	24	24	0	100	
Drop	Angle and geometry appear appropriate?	24	24	0	100	
Structures*	Free of piping or other structural failures?	24	24	0	100	100%
Olidolaics	1. 1 100 of piping of outer caracterial famous.				100	.0070
G. Wads/	1. Free of scour?	24	24	0	100	
Boulders	2. Footing stable?	24	24	0	100	100%
Douinel 2	2. I coung stable:					,
Douide! 8	Logan Creek, Reach 2 (1,					100,0
Douldel 8						11177
Douluel S		38 LF), Enhancement		Total Number	% Performing	
		(# Stable) Number	Reach	Total Number	% Performing	Feature
Feature	Logan Creek, Reach 2 (1,0	(# Stable) Number Performing	Total number	/ feet in unstable	in Stable	Feature Perfomance
Feature Category	Logan Creek, Reach 2 (1,0 Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-Built	/ feet in unstable state	in Stable Condition	Feature Perfomance
Feature	Logan Creek, Reach 2 (1,t Metric (per As-Built and reference baselines) 1. Present?	38 LF), Enhancement (# Stable) Number Performing as Intended 10	Total number per As-Built	/ feet in unstable state	in Stable Condition 100	Feature Perfomance
Feature Category	Logan Creek, Reach 2 (1,0 Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10	Total number per As-Built	/ feet in unstable state 0 0	in Stable Condition 100 100	Feature Perfomance
Feature Category	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10	Total number per As-Built 10 10 10	/ feet in unstable state 0 0 0	in Stable Condition 100 100 100	Feature Perfomance
Feature Category	Logan Creek, Reach 2 (1,t Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining?	(# Stable) Number Performing as Intended 10 10 10	Total number per As-Built 10 10 10	/ feet in unstable state 0 0 0 0 0	in Stable Condition 100 100 100	Feature Perfomance Mean or Total
Feature Category	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10	Total number per As-Built 10 10 10	/ feet in unstable state 0 0 0	in Stable Condition 100 100 100	Feature Perfomance
Feature Category	Logan Creek, Reach 2 (1,t Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?)	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 11 11 11 13	Total number per As-Built 10 10 10	/ feet in unstable state 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100	Feature Perfomance Mean or Total
Feature Category A. Riffles	Logan Creek, Reach 2 (1,0 Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	(# Stable) Number Performing as Intended 10 10 10 10 10 11 11 13	Total number per As-Built 10 10 10 10 10 10 13 13	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles	Logan Creek, Reach 2 (1,t Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?)	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 11 11 11 13	Total number per As-Built 10 10 10 10 10 13	/ feet in unstable state 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 13 13 13	Total number per As-Built 10 10 10 10 10 10 13 13 13 13	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles	Logan Creek, Reach 2 (1,0 Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%)	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 11 13 13 13	Total number per As-Built 10 10 10 10 10 13 13 13 100 100	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 13 13 13	Total number per As-Built 10 10 10 10 10 10 13 13 13 13	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%)	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 10 11 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 13 13 13 100 100 100	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 13 13 13 100 100 5	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools C. Thalweg	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 10 13 13 13 100 100 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools C. Thalweg	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 10 13 13 13 100 100 5	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total
Feature Category A. Riffles B. Pools C. Thalweg	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 13 13 13 100 100 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100%
Feature Category A. Riffles B. Pools	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 13 13 13 100 100 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Tota 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 13 13 13 13 13 55 5 5 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Tota 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13 13 100 100 5 5 5 5	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13 13 13 100 100 5 5 5 5 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes,	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 10 13 13 13 13 100 100 5 5 5 5 1,038 1,038	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, #w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 5 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 13 13 13 13 100 100 5 5 5 5 10.038 1,038 111 111	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Tota 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13 13 13 100 100 5 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Tota 100% 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, #w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 5 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 13 13 13 13 100 100 5 5 5 5 10.038 1,038 111 111	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Tota 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop Structures*	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Ro within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate? 4. Free of piping or other structural failures?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 5 5 5 5 1,038 1,038 11 11 11 11	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100% 100% 100%
Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	Logan Creek, Reach 2 (1,0) Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	38 LF), Enhancement (# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13 13 13 100 100 5 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Feature Perfomance Mean or Total 100% 100% 100% 100%

Table 8. Visu	al Morphological Stability Assessment - Continued					
Logan Creek	Stream Restoration Project: DMS Project ID No. 92515					
	UTS	(178 LF)				
Feature		(# Stable) Number Performing	Total number	Total Number	% Performing in Stable	Feature Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	3	3	0	100	Wicarror rotar
7t. Pulles	Armor stable (e.g. no displacement)?	3	3	0	100	
1	Facet grades appears stable?	3	3	0	100	
İ	4. Minimal evidence of embedding/fining?	3	3	0	100	
	5. Length appropriate?	3	3	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	3	3	0	100	
B. 1 00.0	Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	3	3	0	100	
	3. Length appropriate?	3	3	0	100	100%
O. The book of	Upstream of pool (structure) centering? (%)	100	100	0	100	
C. Thalweg ¹	Downstream of pool (structure) centering: (%) Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	0	0			
B. Modridoro	Of those eroding, # w/concomitant point bar formation?	0	0			
	3. Apparent Rc within spec?	0	0			
	Sufficient floodplain access and relief?	0	0			
F. Bed	General channel bed aggradation areas (bar formation)	178	178	0	100	
General	Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	178	178	0	100	100%
F. Vanes,	Free of back or arm scour?	4	4	0	100	
Rock/Log	2. Height appropriate?	4	4	0	100	
Drop	Angle and geometry appear appropriate?	4	4	0	100	
Structures	Free of piping or other structural failures?	4	4	0	100	100%
G. Wads/	1. Free of scour?	0	0			
Boulders	2. Footing stable?	0	0			

	UT6,	(127 LF)				
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Tota
A. Riffles	1. Present?	3	3	0	100	
	Armor stable (e.g. no displacement)?	3	3	0	100	
	3. Facet grades appears stable?	3	3	0	100	
	Minimal evidence of embedding/fining?	3	3	0	100	
	5. Length appropriate?	3	3	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	2	2	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	2	2	0	100	
	3. Length appropriate?	2	2	0	100	100%
C. Thalweg	Upstream of pool (structure) centering? (%)	100	100	0	100	
	Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
E. Bed	General channel bed aggradation areas (bar formation)	127	127	0	100	
General	Channel bed degradation - areas of increasing down- cutting or head cutting?	127	127	0	100	100%
F. Vanes,	Free of back or arm scour?	2	2	0	100	
Rock/Log	2. Height appropriate?	2	2	0	100	
Orop	Angle and geometry appear appropriate?	2	2	0	100	
Structures	Free of piping or other structural failures?	2	2	0	100	100%
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

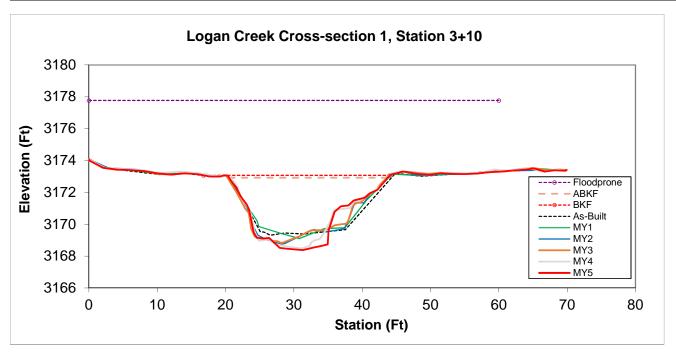
	UT	8, (45 LF)				
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Tota
A. Riffles	1. Present?	1	1	0	100	mount of Total
A. Killes	Armor stable (e.g. no displacement)?	1	1	0	100	
	Facet grades appears stable?	1	1	0	100	
	Minimal evidence of embedding/fining?	1	1	0	100	
	5. Length appropriate?	1	1	0	100	100%
	J. Length appropriate:	'	· '	0	100	100 /6
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	0	0	0		
5. 1 00.0	Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	0	0	0		
	3. Length appropriate?	0	0	0		
	g	-		-		
C. Thalweg	Upstream of pool (structure) centering? (%)	100	100	0	100	
- 3	Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
F. Bed	General channel bed aggradation areas (bar formation)	45	45	0	100	
General	Channel bed degradation - areas of increasing down-			Ů	100	
00110141	cutting or head cutting?	45	45	0	100	100%
Vanes.	Free of back or arm scour?	1	1	0	100	
Rock/Log	2. Height appropriate?	1	1	0	100	
Orop	Angle and geometry appear appropriate?	1	1	0	100	
Structures	A figure and geometry appear appropriate? 4. Free of piping or other structural failures?	1	1	0	100	100%
5	name of biland or annual annua			Ů	.50	. 20 70
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

Year	Date of Data Collection	Date of Event	Method of Data Collection	Gauge Watermark Height (inches)*		
i cai	Date of Data Collection	Date of Event	Method of Data Confection	Logan Creek Station 30+00		
MY1	None	No events	N\A	0		
MY2	3/18/2016	2 events: 1 in Dec-15 and 1 in Jan-16.	Crest Gauge	25.75		
	8/17/2016	undetermined	Crest Gauge	1.56		
MY3	10/26/2017	Between 7/26/2017 and 10/26/2017	Crest Gauge, Photographs	26.04		
	10/26/2017	10/23/2017	Crest Gauge, Photographs	17.4		
MY4	3/16/2018	Between 10/26/2017 and 3/16/2018	Crest Gauge	12.84		
IVI T 4	6/12/2018**	Between 3/16/2018 and 6/12/2018	Crest Gauge, Photographs	11.88		
	5/7/2019	Between 6/12/18 and 5/7/19	Crest Gauge	19.4		
MY5	8/8/2019	Between 5/7/19 and 8/8/19	Crest Gauge	5.2		
	10/23/2019	Between 8/8/19 and 10/23/19	Crest Gauge	1.5		

* height indicates the highest position of cork shavings on the dowel. ** No events recorded after 10/23/19.

Crest Gauge reading taken on 5/7/2019 shows a distinct high flow event at 19.4 inches. Reading was taken with three consecutive measurements.

Crest gauge reading takenon 8/8/19 shows a distinct high flow event at 5.2 inches.

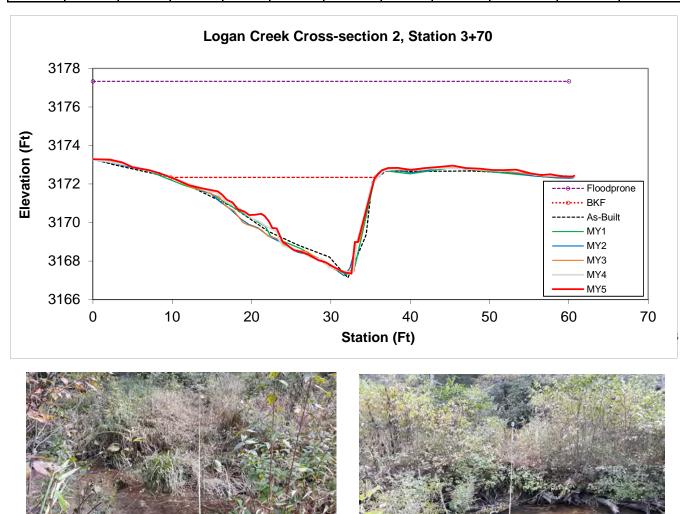


Crest gauge reading taken on 10/23/19 shows a high flow event at 1.5 inches.

Figure 6. Cross-Sections with Annual Overlays

Permanent Cross-Section 1 (MY5 Data - collected October, 2019)

					Max						
	Stream		BKF	BKF	BKF		BH				Low TOB
Feature	Type	BKF Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	Е	66.72	27.27	2.45	4.70	11.13	1.03	2.56	3173.07	3173.07	4.70

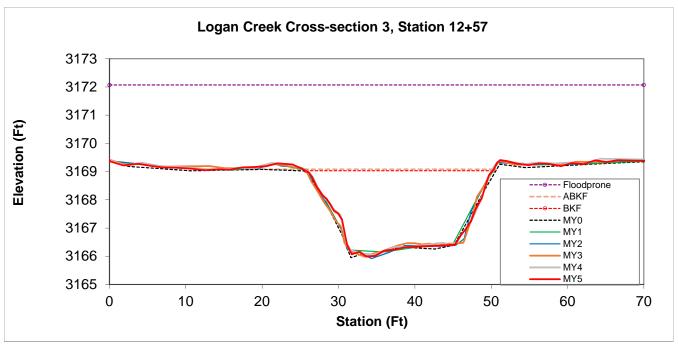


Looking at the Left Bank

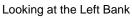
Looking at the Right Bank

Permanent Cross-Section 2 (MY5 Data - collected October, 2019)

	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Pool	-	61.17	25.81	2.37	4.99	10.89		2.35	3172.34	3172.83	5.42

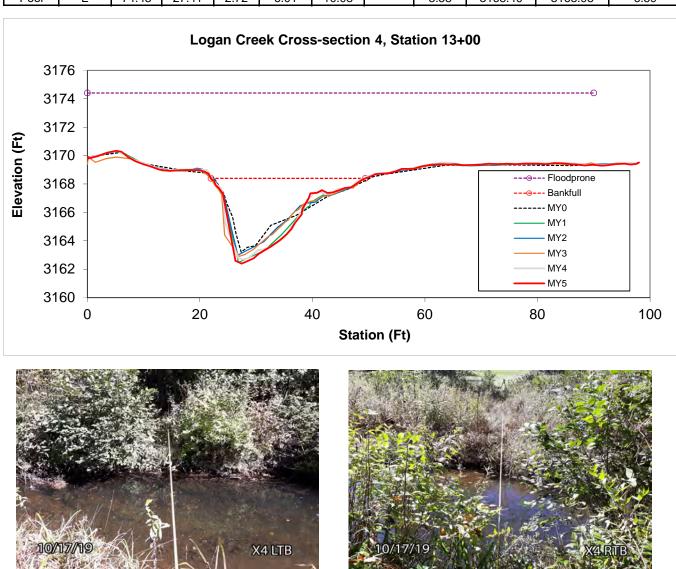

Note: ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Looking at the Right Bank


Looking at the Left Bank

Permanent Cross-Section 3 (MY5 Data - collected October, 2019)

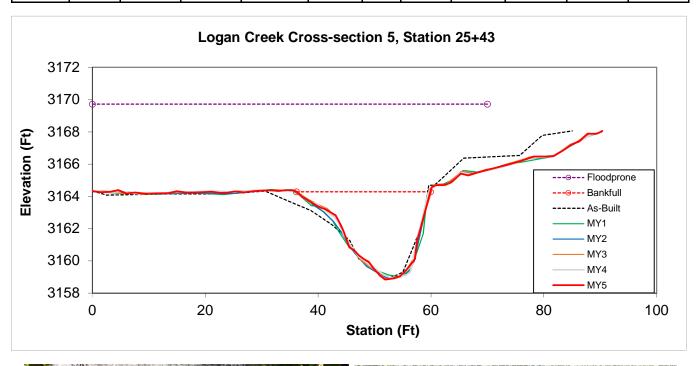
	Chunna	DVE	DICE	DVE	May DKE						L TOD
Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Low TOB Depth
Riffle	Ë	51.95	24.47	2.12	3.04	11.54	1.06	4.06	3169.03	3169.25	3.26



Looking at the Right Bank

Permanent Cross-Section 4 (MY5Data - collected October, 2019)

	Stream	BKF	BKF	BKF	Max BKF						Low TOB
Feature	Type	Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Pool	Е	74.43	27.41	2.72	6.01	10.08		3.58	3168.40	3168.98	6.59

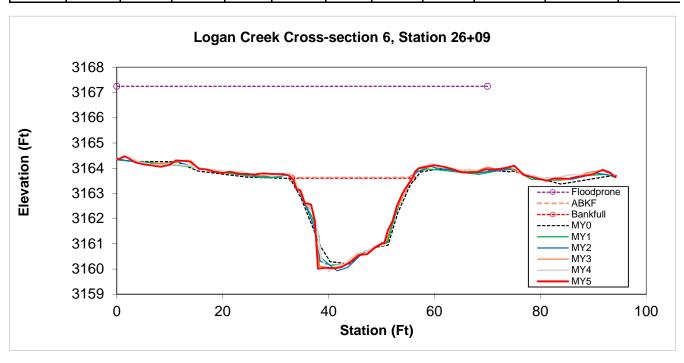

Note: ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Looking at the Right Bank

Looking at the Left Bank

Permanent Cross-Section 5 (MY5 Data - collected October, 2019)

	S	Stream				Max BKF						Low TOB
Fea	ture	Type	BKF Area	BKF Width	BKF Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Po	ol	-	70.73	23.75	2.98	5.44	7.97		3.80	3164.28	3164.38	5.54

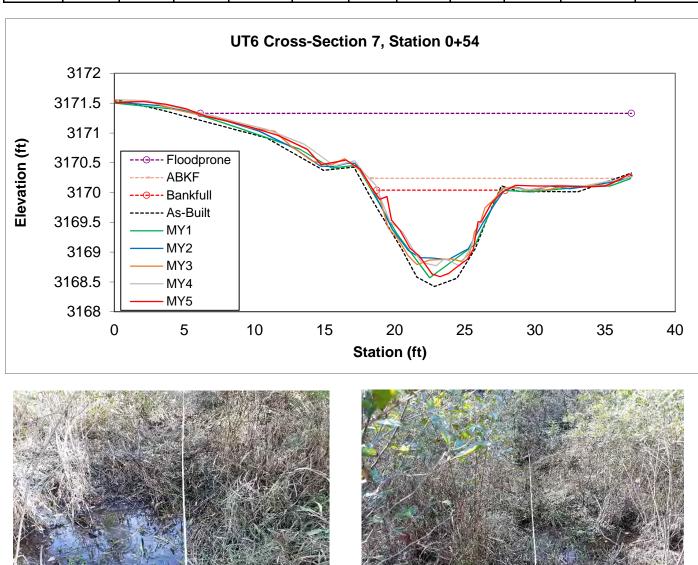


Looking at the Left Bank

Looking at the Right Bank

Permanent Cross-Section 6 (MY5 Data - collected October, 2019)

	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	E	50.96	22.77	2.24	3.59	10.17	1.01	4.14	3163.6	3163.71	3.658



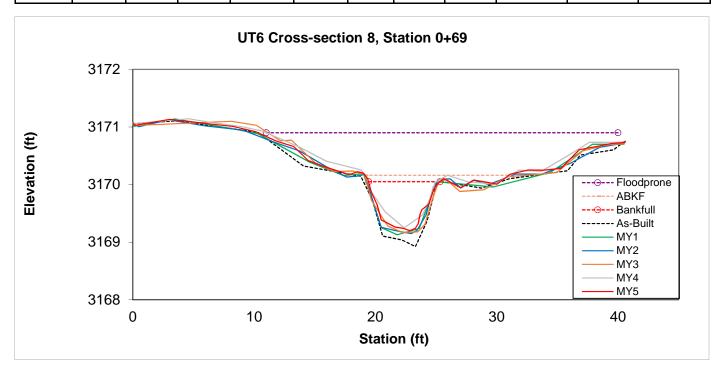
Looking at the Left Bank

Looking at the Right Bank

Permanent Cross-section 7 (MY5 Data - collected October, 2019)

						Max						
		Stream	BKF	BKF	BKF	BKF		BH		BKF		Low TOB
Fea	ature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	Elev	TOB Elev	Depth
Р	ool	-	7.57	9.45	8.0	1.45	11.81		3.56	3170.04	3170.12	1.53

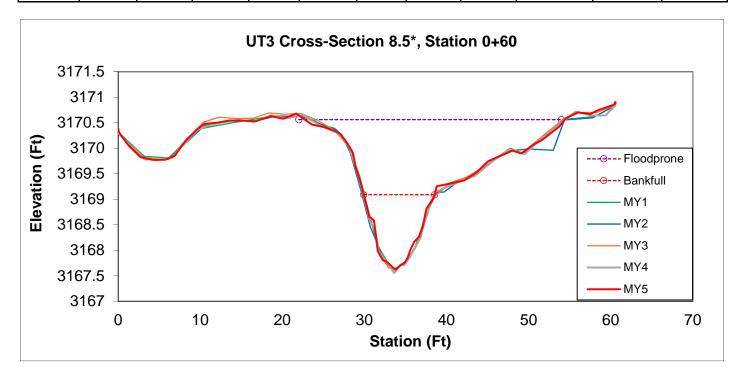
Note: ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.


Looking at the Right Bank

10/16/19

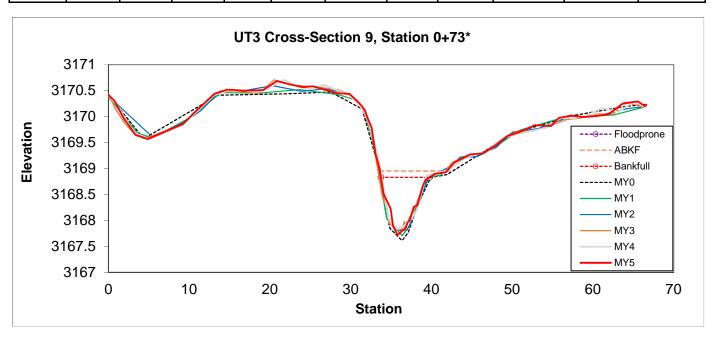
Looking at the Left Bank

Permanent Cross-section 8 (MY5 Data - collected October, 2019)


					Max						
	Stream	BKF	BKF	BKF	BKF		BH				Low TOB
Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	E	3.28	5.89	0.56	0.85	10.52	0.94	5.14	3170.05	3170.10	0.90

Permanent Cross-section 8.5 (MY5 Data - collected October, 2019)

					Max						
	Stream	BKF	BKF	BKF	BKF		BH				Low TOB
Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev	Depth
Pool	-	7.69	8.63	0.89	1.47	9.7		5.68	3169.09	3170.27	2.65


Looking at the Left Bank

Looking at the Right Bank

^{*} This Pool cross-section was not taken for the baseline but was added during MY1 survey and will be continued each year going forward.

Permanent Cross-section 9 (MY5 Data - collected October, 2019)

					Max						
	Stream	BKF	BKF	BKF	BKF		BH				Low TOB
Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	E	3.63	6.02	0.6	1.11	10.03	0.8626	5.18	3168.83	3168.78	1.06

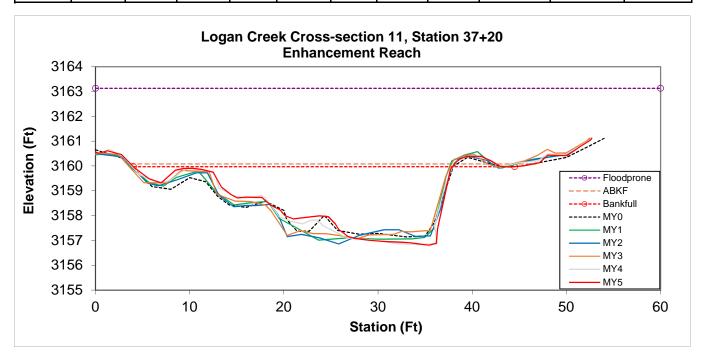
Looking at the Left Bank

Looking at the Right Bank

^{*} The stationing shown on this cross section plot has been changed to correct an error shown in the MY0 plots.

Permanent Cross-section 10 (MY5 Data - collected October, 2019)

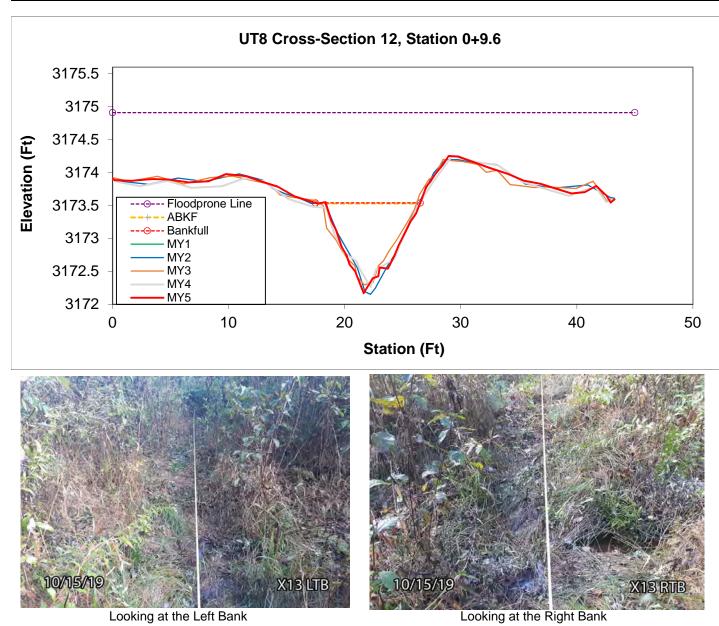
	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Pool	-	75.71	32.18	2.35	3.59	13.69		1.85	3159.66	3160.614	4.54

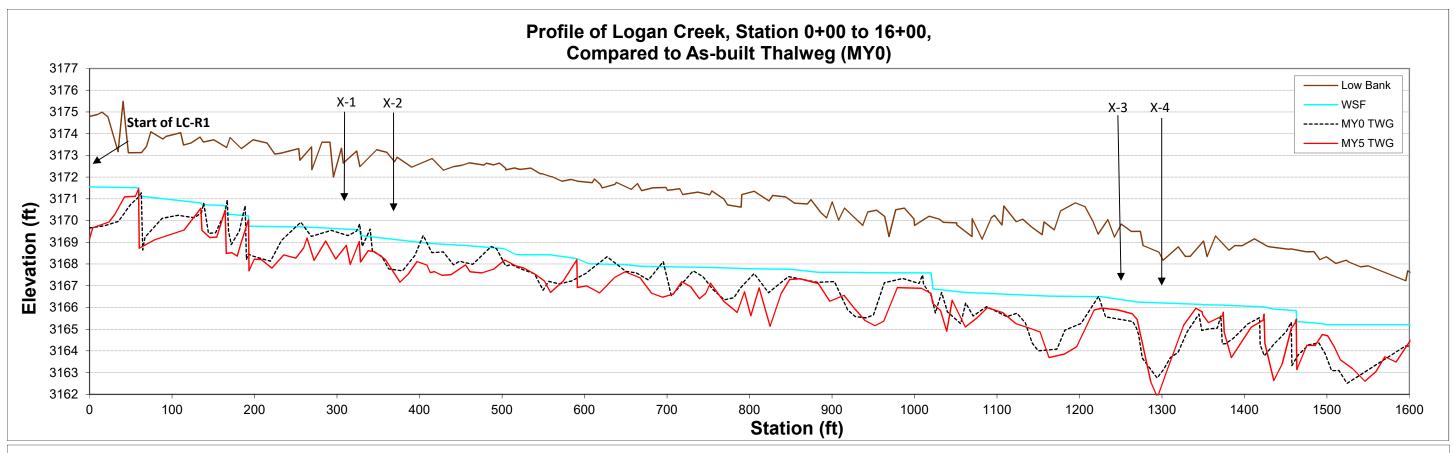


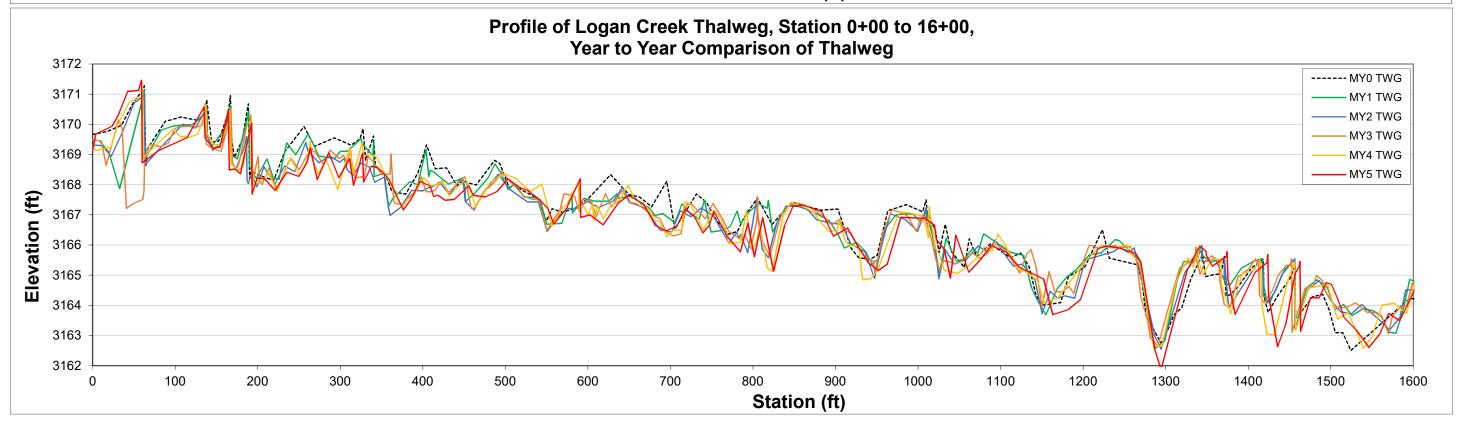

Looking at the Left Bank

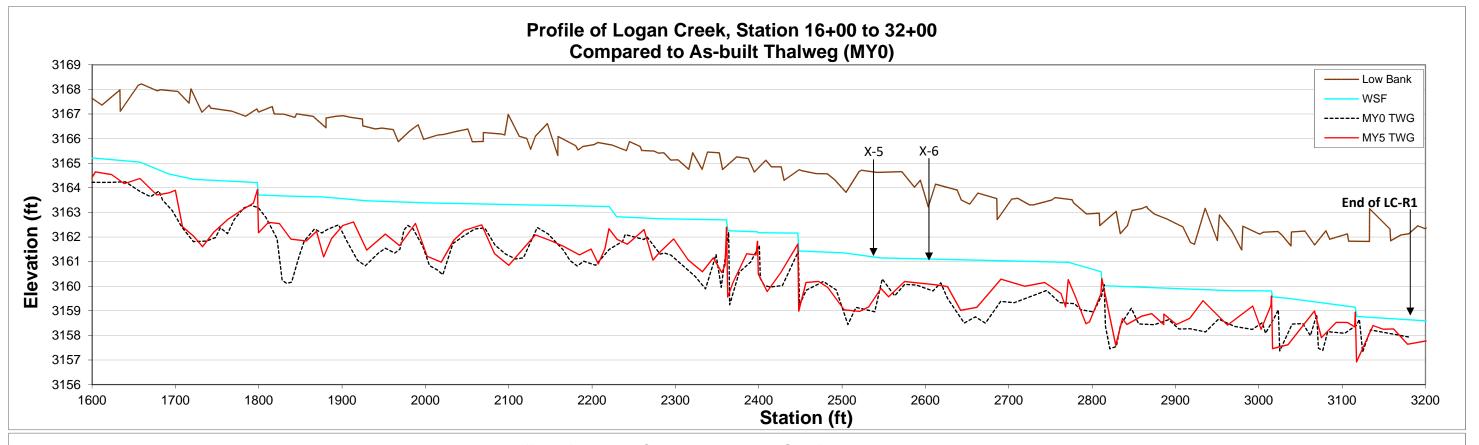
Looking at the Right Bank

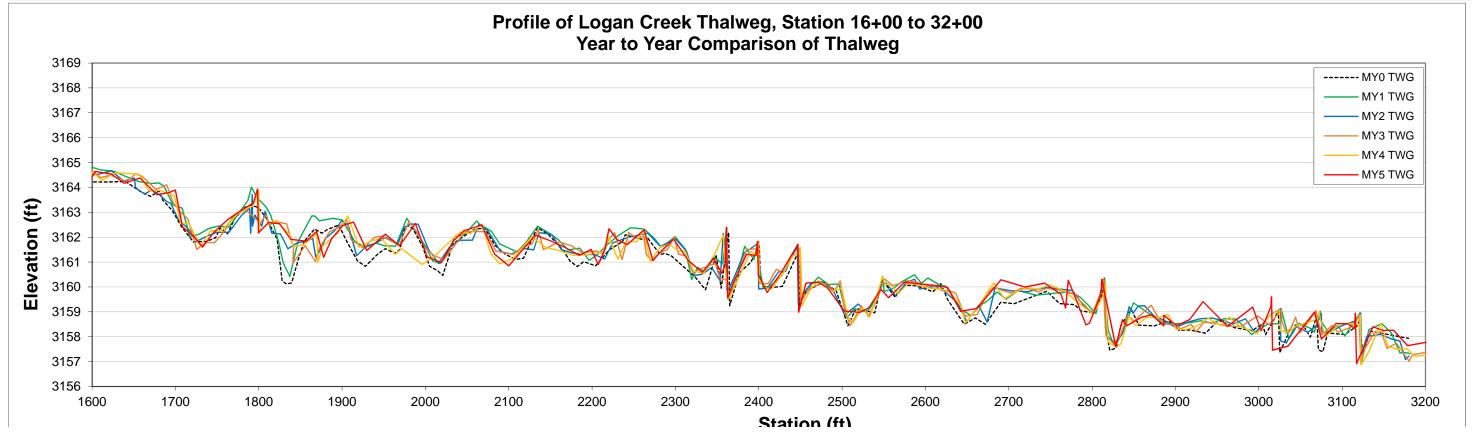
Permanent Cross-section 11 (MY5 Data - collected October, 2019)

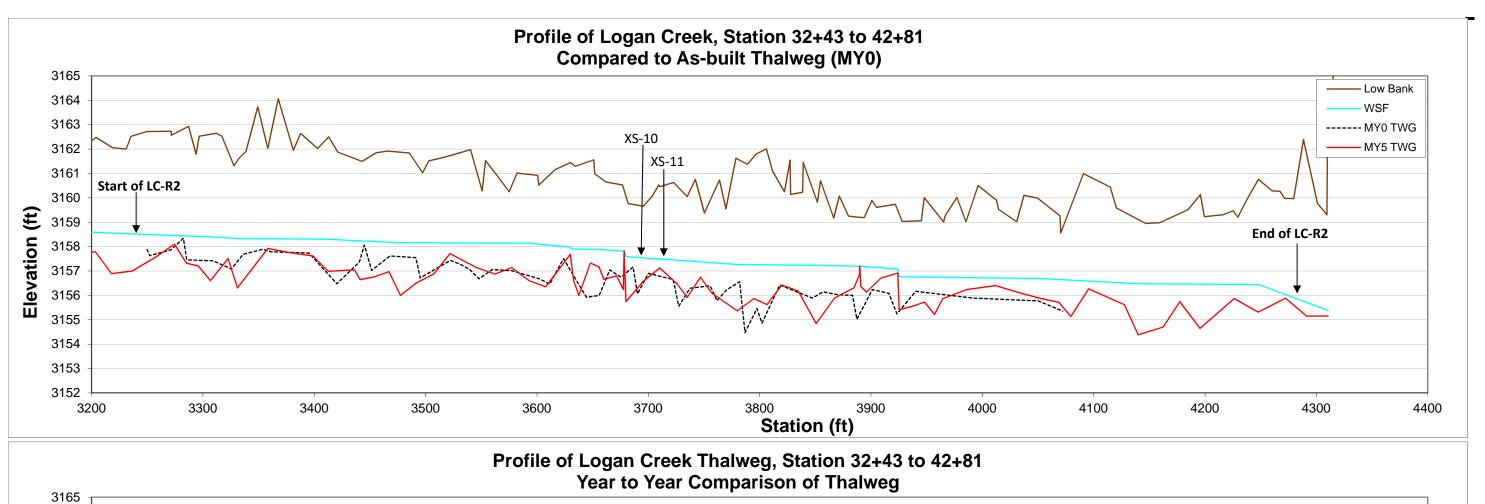

Ī		Stream		BKF	BKF	Max BKF						Low TOB
	Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
ĺ	Riffle	В	56.53	34.98	1.62	3.16	21.59	1.13	1.51	3159.97	3160.39	3.58

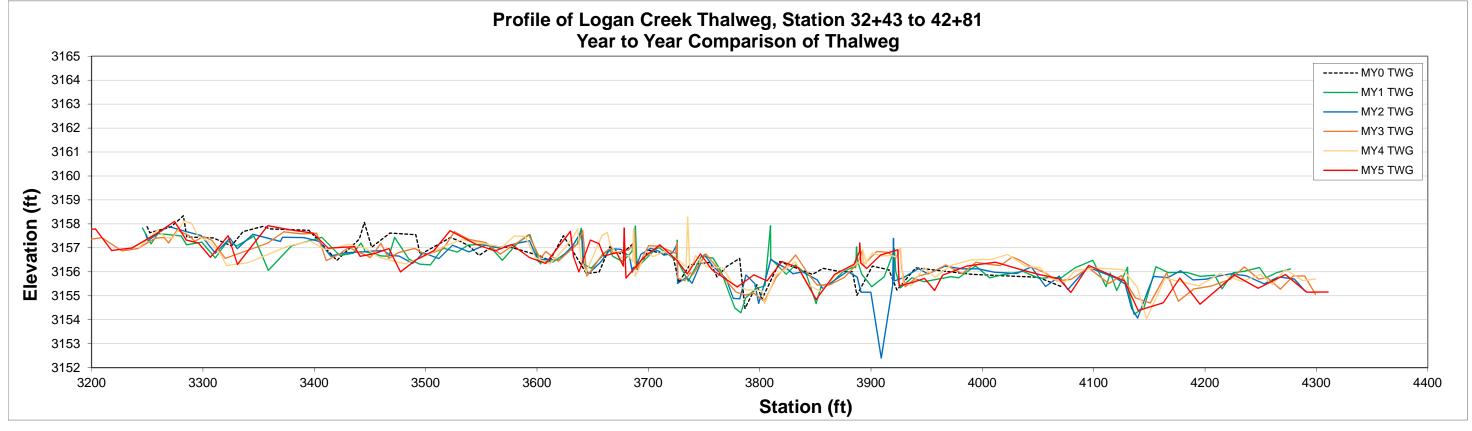


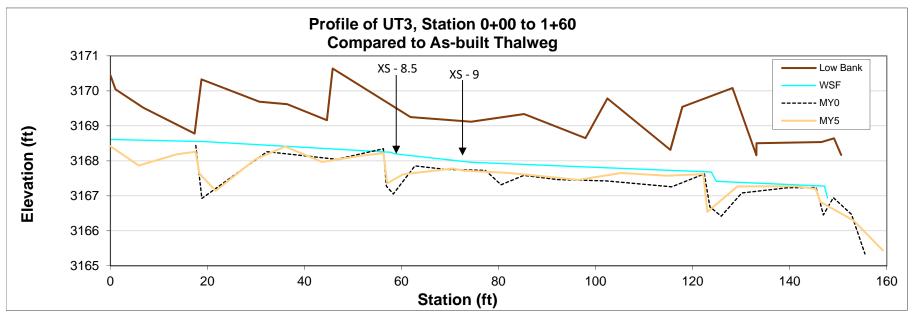

Permanent Cross-section 12 (MY5 Data - collected October, 2019)

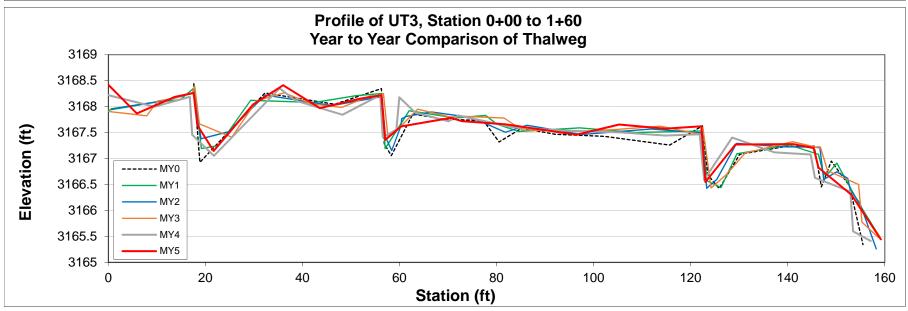

					Max						
	Stream	BKF	BKF	BKF	BKF		BH				Low TOB
Feature	Туре	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	Е	6.09	8.69	0.7	1.37	12.41	1.0169	4.97	3173.54	3173.55	1.38

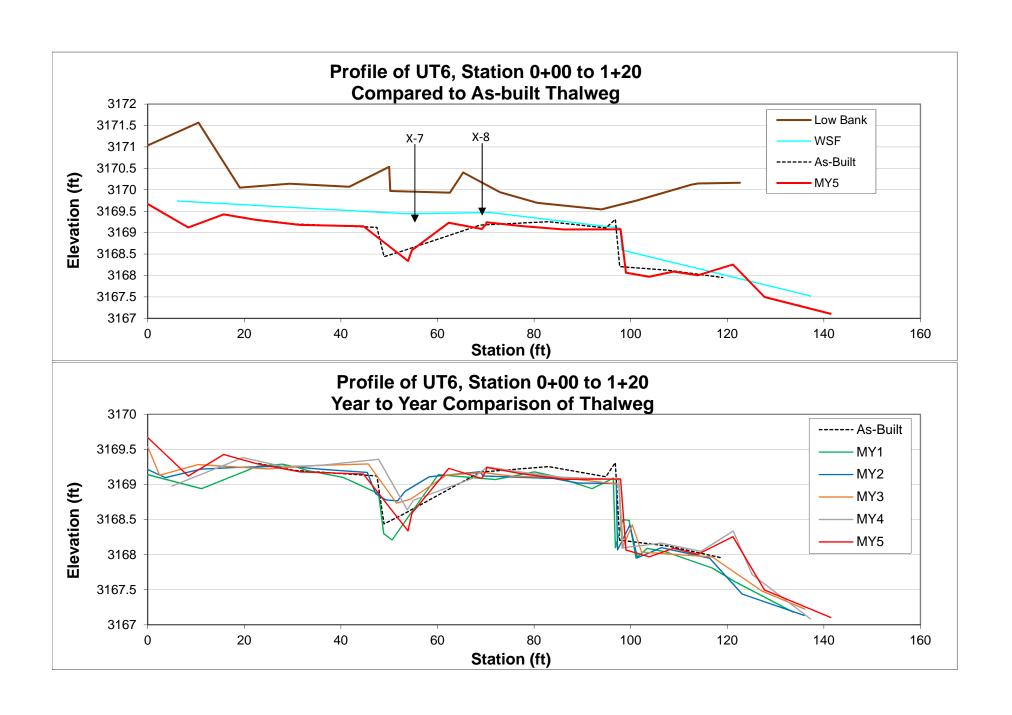


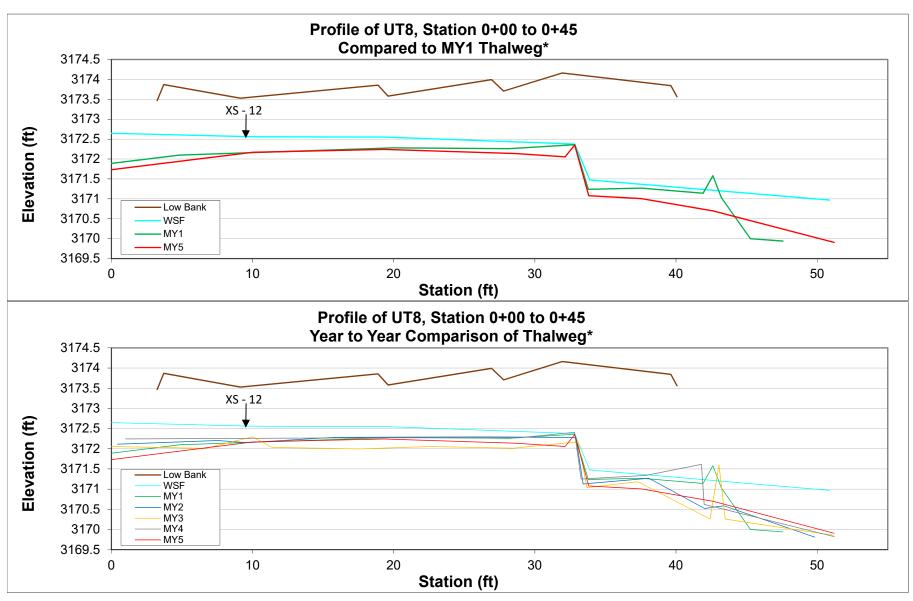

^{*}This Riffle cross-section was not taken during AB or MY1 surveys but was added in MY2 and will be continued each year going forward.

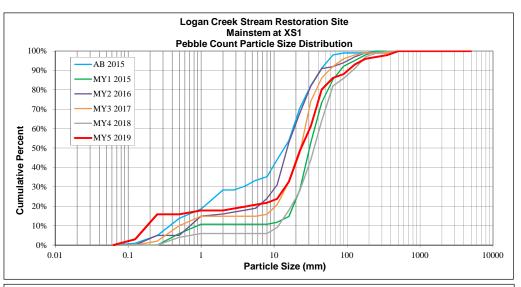


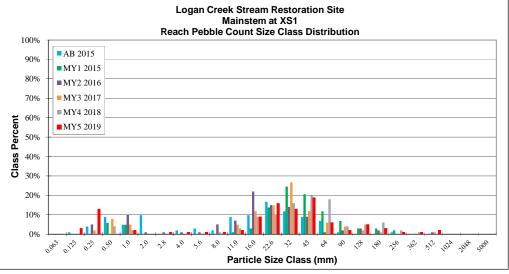








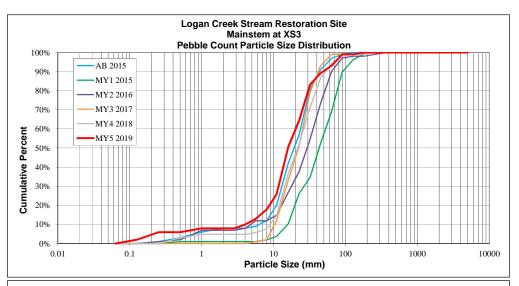

^{*} Note: This profile was added in MY1 because restoration credit is being requested for this reach. However, the profile on this reach was not surveyed and included in the MY0 report.

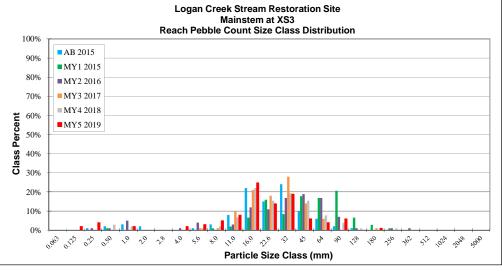

Cross-Section Pebble Count; Monitoring Year 5 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS1
FEATURE:	Riffle
DATE:	23-Oct-19

				MY5 2019	Distribution	
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125	3	3%	3%	0.125
	Fine	.12525	13	13%	16%	0.25
Sand	Medium	.2550			16%	0.50
	Coarse	.50 - 1.0	2	2%	18%	1.0
	Very Coarse	1.0 - 2.0			18%	2.0
	Very Fine	2.0 - 2.8	1	1%	19%	2.8
	Very Fine	2.8 - 4.0	1	1%	20%	4.0
	Fine	4.0 - 5.6	1	1%	21%	5.6
Gravel	Fine	5.6 - 8.0	1	1%	22%	8.0
	Medium	8.0 - 11.0	2	2%	24%	11.0
	Medium	11.0 - 16.0	9	9%	33%	16.0
	Coarse	16 - 22.6	16	16%	49%	22.6
	Coarse	22.6 - 32	13	13%	61%	32
	Very Coarse	32 - 45	19	19%	80%	45
	Very Coarse	45 - 64	6	6%	86%	64
	Small	64 - 90	2	2%	88%	90
Cobble	Small	90 - 128	5	5%	93%	128
Copple	Large	128 - 180	3	3%	96%	180
	Large	180 - 256	1	1%	97%	256
	Small	256 - 362	1	1%	98%	362
D 11	Small	362 - 512	2	2%	100%	512
Boulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		101	100%		

Summary Data									
Channel materials									
D16 =	0.5	D84 =	56.4						
D35 =	16.8	D95 =	159.8						
D50 =	23.5	D100 =	362 - 512						

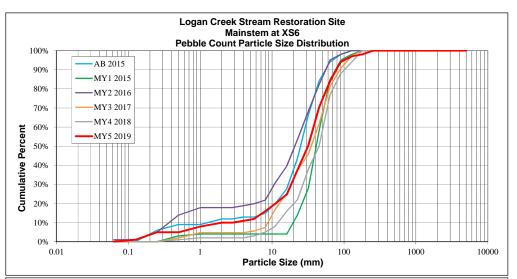


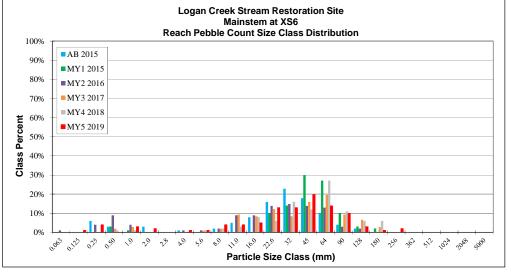

Cross-Section Pebble Count; Monitoring Year 5 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS3
FEATURE:	Riffle
DATE:	23-Oct-19

DATE:		23-Oct-19				
				MY5 2019		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125	2	2%	2%	0.125
	Fine	.12525	4	4%	6%	0.25
Sand	Medium	.2550			6%	0.50
	Coarse	.50 - 1.0	2	2%	8%	1.0
	Very Coarse	1.0 - 2.0			8%	2.0
	Very Fine	2.0 - 2.8			8%	2.8
	Very Fine	2.8 - 4.0	2	2%	10%	4.0
	Fine	4.0 - 5.6	3	3%	13%	5.6
	Fine	5.6 - 8.0	5	5%	18%	8.0
Gravel	Medium	8.0 - 11.0	8	8%	26%	11.0
Giavei	Medium	11.0 - 16.0	25	25%	50%	16.0
	Coarse	16 - 22.6	14	14%	64%	22.6
	Coarse	22.6 - 32	19	19%	83%	32
	Very Coarse	32 - 45	6	6%	89%	45
	Very Coarse	45 - 64	4	4%	93%	64
	Small	64 - 90	6	6%	99%	90
Cobble	Small	90 - 128			99%	128
Copple	Large	128 - 180	1	1%	100%	180
	Large	180 - 256			100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Domuer	Medium	512 - 1024	•		100%	1024
	Large-Very Large	1024 - 2048	•		100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		101	100%		

Summary Data										
Channel materials										
D16 =	7.0	D84 =	33.6							
D35 =	12.7	D95 =	71.5							
D50 =	15.9	D100 =	128 - 180							




Cross-Section Pebble Count; Monitoring Year 5 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS6
FEATURE:	Riffle
DATE:	23-Oct-19

DATE.		23-OCI-19				
				MY5 2019		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125	1	1%	1%	0.125
	Fine	.12525	4	4%	5%	0.25
Sand	Medium	.2550			5%	0.50
	Coarse	.50 - 1.0	3	3%	8%	1.0
	Very Coarse	1.0 - 2.0	2	2%	10%	2.0
	Very Fine	2.0 - 2.8			10%	2.8
	Very Fine	2.8 - 4.0	1	1%	11%	4.0
	Fine	4.0 - 5.6	1	1%	12%	5.6
	Fine	5.6 - 8.0	4	4%	16%	8.0
Gravel	Medium	8.0 - 11.0	4	4%	20%	11.0
Gravei	Medium	11.0 - 16.0	5	5%	25%	16.0
	Coarse	16 - 22.6	13	13%	38%	22.6
	Coarse	22.6 - 32	13	13%	50%	32
	Very Coarse	32 - 45	20	20%	70%	45
	Very Coarse	45 - 64	14	14%	84%	64
	Small	64 - 90	10	10%	94%	90
Cobble	Small	90 - 128	3	3%	97%	128
Copple	Large	128 - 180	1	1%	98%	180
	Large	180 - 256	2	2%	100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512	·		100%	512
Dominer	Medium	512 - 1024	,		100%	1024
	Large-Very Large	1024 - 2048	,		100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % c	of whole count		101	100%		

	Summa	ry Data	
	Channel	materials	
D16 =	8.1	D84 =	63.7
D35 =	21.1	D95 =	100.6
D50 =	31.6	D100 =	180 - 256

Table 10. Monitoring Year 5 Stream Summary

Table 10. Monitoring Year 5 Stream Summary Logan Creek Restoration Project; DMS Project ID No. 94645										
Parameter USGS	Regional Curve Interval ¹	Pre-Existing Condition ¹	Reference Reach Data Right Prong Logan Creek	Design	Logan Creek Mainstem As-built	MY1	MY2	MY3	MY4	MY5
Dimension and Substrate - Riffle	NC Mtn. Regional Curve	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	n Min Mean Med Max SD n	Min Mean Med Max SD n
BF Width (ft) - Floodgrone Width (ft) -	26.4 28.3 -	22.9 27.3 23.8 38.7 6.6 4	- 16.7	- 26.0	23.6 24.3 24.1 25.2 0.67 3 - >150 3	22.6 23.7 24.0 24.3 0.77 3 - >150 3	22.5 26.2 24.3 33.9 4.50 4 >54 >80 - >100 - 4	22.4 26.2 24.1 34.1 4.62 4 >54 >80 - >100 - 4	4 22.6 26.7 25.1 34.2 4.46 4 4 >54 >80 - >100 - 4	22.6 27.3 25.9 35.0 4.7 4 >54 >80 >100 4
BF Mean Depth (ft)	1.4 1.5 -	1.50 2.2 2.4 2.60 0.4 4	- 1.06	- 2.3	2.1 2.3 2.2 2.6 0.22 3	2.1 2.3 2.2 2.6 0.21 3	1.8 2.2 2.7 0.32 4	1.7 2.2 2.2 2.7 0.34 4		
BF Max Depth (ft) - BF Cross-sectional Area (ft²) -	37.5 42.7 -	3.4 3.6 3.5 3.8 0.2 4 55.8 58.0 58.4 59.5 1.36 4	- 1.54	- 4.0	3.1 3.4 3.4 3.7 0.24 3 51.7 56.0 53.2 63.0 5.01 3	2.9 3.4 3.5 4.0 0.45 3 50.2 54.6 51.2 62.4 5.53 3	3.0 3.5 3.4 4.3 0.53 4 51.4 57.7 57.3 64.8 5.74 4	2.9 3.5 3.3 4.3 0.53 4 50.8 56.8 55.9 64.7 5.60 4	4 3.0 3.6 3.4 4.6 0.64 4 4 49.1 55.9 54.9 64.9 6.19 4	
Width/Depth Ratio -		8.9 13.6 9.8 25.7 7.01 4 3.4 11.3 12.0 17.8 5.83 4	- 15.8	- 12	9.2 10.7 10.8 12.0 1.12 3 2.9 3.6 3.9 4.0 0.50 3	9.3 10.3 10.1 11.6 0.96 3 2.9 3.7 4.0 4.1 0.54 3	30	8.9 12.4 10.6 19.6 4.24 4	4 10.3 13.0 10.9 20.0 4.04 4 4 1.5 3.1 3.4 4.2 1.10 4	10.3 13.6 11.3 21.6 4.61 4
Entrenchment Ratio - Bank Height Ratio -		3.4 11.3 12.0 17.8 5.83 4 1 1.2 1.1 1.5 0.2 4	- 2.0	- 5.8	2.9 3.6 3.9 4.0 0.50 3 1.0 1.00 1.00 1.0 0.00 3	2.9 3.7 4.0 4.1 0.54 3 1.0 1.0 1.0 1.1 0.05 3	1.6 3.2 3.5 4.2 1.06 4 1.0 1.1 1.0 1.2 0.09 4	1.5 3.2 3.5 4.2 1.08 4 1.0 1.0 1.0 1.1 0.04 4	4 1.5 3.1 3.4 4.2 1.10 4 4 1.01 1.05 1.02 1.14 0.06 4	1.5 3.1 3.3 4.2 1.11 4 1.01 1.06 1.05 1.13 0.05 4
d50 (mm) -				- 12.4	1.0 1.00 1.00 1.0 0.00 3 12.4 12.4 12.4 12.4 0.00 1	1.0 1.0 1.0 1.1 0.05 3 30.7 38.3 41.1 43.0 5.41 3	15.2 21.7 20.7 29.2 5.8 3	22.2 26.8 23.3 35.0 5.8 3	4 1.01 1.05 1.02 1.14 0.06 4 3 21.6 34.0 34.7 45.0 8.3 3	1.01 1.06 1.05 1.13 0.05 4 15.9 23.7 23.5 31.6 6.4 3
Pattern Channel Beltwidth (ft)		194 216 217 252 18.13 7	- 80	65 - 140	130.0 193.2 190.0 258.0 41.45 6	130.0 193.2 190.0 258.0 41.5 6	130.0 193.2 190.0 258.0 41.5 6	130.0 193.2 190.0 258.0 41.5 6	6 130.0 193.2 190.0 258.0 41.5 6	130.0 193.2 190.0 258.0 41.5 6
Radius of Curvature (ft)		23 32 30 46 8.6 5 0.85 1.19 1.11 1.7 0.32 5	- 23	28 75	150.00 193.2 190.0 258.0 41.43 6 44.0 63.9 66.1 104.0 17.17 9 180 2.60 2.70 4.30 0.71 9 145.0 236.7 234.5 321.0 48.10 12 6.0 9.7 10.1 13.2 1.98 12	44.0 63.9 66.1 104.0 17.2 9	130.0 193.2 190.0 258.0 41.5 6 44.0 63.9 66.1 194.0 17.2 9 1.50 2.0 2.0 40 0.7 9 145.0 236.7 244.5 321.0 48.1 12 6.0 9.7 10.1 13.2 2.0 12	44.0 63.9 66.1 104.0 17.2 9	9 440 63.9 66.1 104.0 17.2 9 9 1.80 2.60 2.70 43.0 0.71 9 12 145.0 236.7 244.5 321.0 48.1 12 12 6.0 9.7 10.1 13.2 2.0 12	44.0 63.9 66.1 104.0 17.2 9
Re:Bankfull width (ft/ft) - Meander Wavelength (ft) -		120 177 197 239 46.75 5	- 150	118 236	1.80 2.60 2.70 4.30 0.71 9 145.0 236.7 244.5 321.0 48.10 12	1.80 2.60 2.70 4.30 0.71 9 145.0 236.7 244.5 321.0 48.1 12	1.80 2.60 2.70 4.30 0.71 9 145.0 236.7 244.5 321.0 48.1 12	1.80 2.60 2.70 4.30 0.71 5 145.0 236.7 244.5 321.0 48.1 1:	9 1.80 2.60 2.70 4.30 0.71 9 12 145.0 236.7 244.5 321.0 48.1 12	1.80 2.60 2.70 4.30 0.71 9 145.0 236.7 244.5 321.0 48.1 12
Meander Width Ratio -		120 177 197 239 46.75 5 4.44 6.56 7.3 8.85 1.73 5	- 150	118 236 2.5 5.4	6.0 9.7 10.1 13.2 1.98 12	6.0 9.7 10.1 13.2 2.0 12	6.0 9.7 10.1 13.2 2.0 12	6.0 9.7 10.1 13.2 2.0 1	12 6.0 9.7 10.1 13.2 2.0 12	6.0 9.7 10.1 13.2 2.0 12
Profile Riffle Length (ft)						25.7 68.1 65.3 149.8 31.6 16	186 905 935 1623 474 9	40.6 105.7 90.6 238.8 61.8 9	9 27.5 103.3 80.6 220.2 65.3 9	52.4 95.8 95.8 134.4 23.9 9
Riffle Slope (fl/ft) -			- 0.019	0.003 0.007		25.7 68.1 65.3 149.8 31.6 16 0.0009 0.0079 0.0049 0.0218 0.0065 16 31.0 66.4 64.5 112.2 25.4 19 86.6 148.6 143.5 292.6 51.9 20	18.6 90.5 93.5 162.3 47.4 9 0.0025 0.0076 0.0075 0.0162 0.0042 9 48.1 89.2 82.2 150.6 29.1 14 50 127.4 119.8 264 46.3 24 5 5.3 5.4 5.4 0.15 3	0.0060 0.0046 0.0034 0.0118 0.0036 9	9 27.5 103.3 80.6 220.2 65.3 9 9 0.0031 0.0078 0.0064 0.0129 0.0033 9 14 28.5 90.1 84.5 208.8 45.2 14 24 52.1 141.7 132.8 239.5 54.6 23	0.0045 0.0077 0.0079 0.0111 0.0017 9
Pool Length (ft) - Pool Spacing (ft) -	 	: : : : : : : : : : 	. 75	94 - 165	+ : + : + : + : + : + : +	31.0 66.4 64.5 112.2 25.4 19 86.6 148.6 143.5 292.6 51.9 20	48.1 89.2 82.2 150.6 29.1 14 50 127.4 119.8 264 46.3 24	24.2 89.2 82.2 150.6 29.1 1- 38 152.3 126.5 524 109.0 2.	14 28.5 90.1 84.5 208.8 45.2 14 24 52.1 141.7 132.8 239.5 54.6 23	31.2 81.4 82.9 111.8 21.6 14 51.9 109.4 108.5 186.6 38.1 22
Pool Max Depth (ft)		2.9 3.8 4.0 4.5 0.64 3	- 2.28	- 6.00	5.2 5.3 5.2 5.4 0.1 3	5.1 5.4 5.3 5.9 0.36 3	5 5.3 5.4 5.4 0.15 3	3 3.3 3.3 3.9 0.40 4	4 2.0 2.5 2.5 3.0 0.4 4	3.6 5.0 5.2 6.0 0.9 4
Pool Volume (ft ³)										
Substrate and Transport Parameters Ri%/Ru%/P%/G%/S% -				 						
SC% / Sa% / G% / B% / Be% -										
d16 / d35 / d50 / d84 / d95 - Reach Shear Stress (competency) lb/P -		0.8 / 5.8 / 12.4 / 35.4 / 169.6		 	mean 5.1/10.9/16.5/34.8/55.9	mean 17.3/28.6/36.9/71.8/123.1	mean 6.7/16.3 / 22.2 / 45.4 / 91.4	mean 10.2 / 18.2 / 26.8 / 49.7 / 82.2	mean 14.0 / 24.0 / 34.0 / 66.0 / 121.6	mean 5.2 / 16.9 / 23.7 / 51.2 / 110.6
Max part size (mm) mobilized at bankfull (Rosgen Curve)										
Stream Power (transport capacity) W/m ² - Additional Reach Parameters	1 1 1 1	- - - - -	1 - 1 - 1 - 1 - 1 - 1 -				1 - 1 - 1 - 1 - 1 - 1 - 1		
Drainage Area (SM) -	2.1 to 2.67	2.1 at upper end of project to 2.67 towards end of project	- 0.83	2.1 at upper end of project to 2.67 towards end of project	2.1 at upper end of project to 2.67 towards end of project	2.1 at upper end of project to 2.67 towads end of project	2.1 at upper end of project to 2.67 towards end of project	2.1 at upper end of project to 2.67 towards end of project	2.1 at upper end of project to 2.67 towards end of project	2.1 at upper end of project to 2.67 towards end of project
Impervious cover estimate (%) - Rosgen Classification -		- C4 to E4	- C4	- 2.67	- 2.67	- 2.67	- 2.67	- 2.67	- 2.67	- 2.67
BF Velocity (fps)			- 3.55	- 4.31	- 4.33	- 4.20	- 4.20	- C4	- 4.20	- 4.20
BF Discharge (cfs) -	205.7 237.0	-: : : : : : : : : : 	98	- 271.5	- 242.6	- 264.8	- 264.8	- 264.8	- 264.8	- 264.8
Channel length (ft)		- 4,700		- 4,101	- 4,172	- 4,172	- 4,172 1.34	- 4,172 - 1.34	4,172	- 4,172
Sinuosity - Water Surface Slope (Channel) (fl/ft) -	1 1 1 1		- 2.01	- 1.3	- 1.31	- 1.34	- 1.34	- 1.34	- 1.34	- 1.34
BF slope (ft/ft) -			- 0.016	- 0.0047	- 0.0052	- 0.0044	- 0.0044	- 0.0044	- 0.0044	- 0.0044
Bankfull Floodplain Area (acres) - BEHI VL% / L% / M% / H% / VH% / E% -	 : : : 	: 	 	 	+:+:+:+:+:	 	 : : : : : : : : : :	-: 	: : : : : : : : : : 	 : : : : : :
Channel Stability or Habitat Metric -										
Biological or Other 1. Harman, W.A., D.E Wise, M.A. Walker, R. Morris, MA Cantrell, M. Clemmons, G.D. Jennings, D.	D.R. Clinton, J.M. Patterson. 2000. Bankfull Regiona	l Curves for North Carolina Mountain Streams. In: AWRA Conference Proceedings, D	D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in Extrem	e Environments. Anchorage, Alaska.						
LISCS	1		Reference Reach Data		UT3					
Parameter USGS Gauge	Regional Curve Interval ¹	Pre-Existing Condition ¹	Reference Reach Data Morgan Creek	Design	As-built	MYI	MY2	MY3	MY4	MY5
Parameter USGS Gauge Dimension and Substrate - Riffle BF Width (ft) -	NC Mtn./NC Pied. Rural	Pre-Existing Condition ¹ Min Mean Med Max SD n		Design Min Mean Med Max SD n	As-built	My1 Min Mean Med Max SD n - 5.9 1	MY2 Min Mean Med Max SD n - 5.8 1	My3 Min Mean Med Max SD r	n Min Meen Med Max SD n	
Parameter Gauge Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) -			Morgan Creek Min Mean Med Max SD n - 16.7 -		As-built	****	Min Mean Med Max SD n - 5.8 1 - 22.6 1	Min Mean Med Max SD n	n Min Mean Med Max SD n 1 - 5.5 1 1 - 22.6 1	
Parameter Gauge Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft)	NC Mtn./NC Pied. Rural		Morgan Creek Min Mean Med Max SD n - 16.7 - - - - -		As-built As-built	Min Mean Med Max SD n	Min Mean Med Max SD n - 5.8 - - - 1 - 22.6 - - - 1 - 0.70 - - - 1	Min Mean Med Max SD n	n Min Mean Med Max SD n 1 - 5.5 1	
Parameter Gauge Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Man Depth (ft) BF Asa Depth (ft) BF Cross-ectional Area (ft)	NC Mtn./NC Pied. Rural		Morgan Creek Min Mean Med Max SD n		As-built As-built	Min Mean Med Max SD n - 5.9 - - - 1 - 28.1 - - 1 - 0.70 - - 1 - 1.1 - - 1 - 4.1 - - 1	Min Mean Med Max SD n - 5.8 - - - 1 - 22.6 - - - 1 - 0.70 - - - 1 - 1.0 - - - 1 - 4.0 - - 1	Min Mean Med Max SD n - 6.2 - - - 1 - 22.6 - - - 1 - 0.60 - - - 1 - 1.0 - - - 1 - 3.8 - - - -	n Min Mean Med Max SD n 1 - 5.5 1 1 - 22.6 1 1 - 0.69 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Cauge Dimension and Substrate - Riffle BF Width (ft) - Floodponce Width (ft) - BF Man Depth (ft) - BF Man Depth (ft) - BF Common Substrate (ft) - BF Common Substrate (ft) - BF Common Substrate (ft) - Enterochment Rate - Enterochment Rate -	NC Mtn./NC Pied. Rural		Morgan Creek Min Mean Med Max SD n		Min Mem Med Mex SD n	Min Mean Med Max SD n	Min Mean Med Max SD n - 5.8 - - - 1 - 2.26 - - - 1 - 0.70 - - - 1 - 1.0 - - 1 - 4.0 - - - 1 - 8.4 - - - 1	Min Mean Med Max SD n - 6.2 - - - 1 - 22.6 - - - 1 - 0.60 - - - 1 - 1.0 - - - 1 - 3.8 - - - -	n Min Mean Med Max SD n 1 - 5.5 1 1 - 22.6 1 1 - 0.69 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Gauge Dimension and Substrate - Riffle BF Width (1) Floodprone Width (1) BF Men Depth (1) BF Men Depth (1) BF Cross-sectional Area (1) Width Depth Ratio Entercendent Ratio Brank Health Ratio	NC Mtn./NC Pied. Rural		Morgan Creek Min Mean Med Max SD n		As-built As-built	Min Mean Med Max SD n - 5.9 - - - 1 - 28.1 - - 1 - 0.70 - - 1 - 1.1 - - 1 - 4.1 - - 1	Min Mean Med Max SD n - 5.8 - - - 1 - 22.6 - - - 1 - 0.70 - - - 1 - 1.0 - - - 1 - 4.0 - - 1	Min Mean Med Max SD n	n Min Mean Med Max SD n 1 - 5.5 1 1 - 22.6 1 1 - 0.69 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Cauge Dimension and Substrate - Riffle BF Width (ft) - Floodponce Width (ft) - BF Man Depth (ft) - BF Man Depth (ft) - BF Common Substrate (ft) - BF Common Substrate (ft) - BF Common Substrate (ft) - Enterochment Rate - Enterochment Rate -	NC Mtn./NC Pied. Rural		Morgan Creek Min Mean Med Max SD n		Min Mem Med Mex SD n	Min Mean Med Max SD n	Min Mean Med Max SD n - 5.8 - - - 1 - 2.26 - - - 1 - 0.70 - - - 1 - 1.0 - - 1 - 4.0 - - - 1 - 8.4 - - - 1	Min Mean Med Max SD n - 6.2 - - - 1 - 22.6 - - - 1 - 0.60 - - - 1 - 1.0 - - - 1 - 3.8 - - - -	n Min Men Med Max SD n 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Cange	NC Mtn./NC Pied. Rural		Min Mean Med Mex SD n		Min Mem Med Mex SD n	Min Mean Med Max SD n	Min Mean Med Max SD n - 5.8 - - - 1 - 2.26 - - - 1 - 0.70 - - - 1 - 1.0 - - 1 - 4.0 - - - 1 - 8.4 - - - 1	Min Mean Med Max SD n - 6.2 - - - 1 - 22.6 - - - 1 - 0.60 - - - 1 - 1.0 - - - 1 - 3.8 - - - -	n Min Men Med Max SD n 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Cange Dimension and Substrate - Riffle BF Width (ft) - BF Mean Depth (ft) - Method Depth Rates - BE Mean Depth Rates - Color (man) Pattern Chamnel Belwidth (ft) - Redmand Belwidth (ft) - ReBmandall width (ft) - BE Meandall width (ft) -	NC Mtn./NC Pied. Rural		Morgan Creek		Min Mean Med Mex SD n	Min Mee Med Mee SD n	Min Men Med Max SD n	Min Mean Med Max SD r - 62 1 - 22.6 1 - 0.60 1 - 1.0 1	n Min Men Med Max SD n 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Dimension and Substrate - Riffle Floodponce Width (1) Reflection Common of the Width (1) Reflection Common of the Width (1) Reflection (1)	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n		Min Mean Med Mex SD n	Min Mean Med Max SD n	Min Mean Med Max SD n - 5.8 - - - 1 - 2.26 - - - 1 - 0.70 - - - 1 - 1.0 - - 1 - 4.0 - - - 1 - 8.4 - - - 1	Min Mean Med Max SD r - 62 1 - 22.6 1 - 0.60 1 - 1.0 1	n Min Men Med Max SD n 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Dimension and Substrate - Riffle BF Width (ft) BF denn Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF consumer was a second of the second of	NC Mtn./NC Pied. Rural		Morgan Creek		Min Mem Med Msx SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD r	n Min Men Med Max SD n 1	Min Mean Med Max SD n - 6.0 - - - 1 - 23.4 - - - 1 - 0.60 - - - 1
Parameter Dimension and Substrate - Riffle BF Width (ft)	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n - 6.0 · · · · · · · - 0.7 · · · · · · · - 4.2 · · · · · · · - 1.2 · · · · · · · · · · - 1.2 0 31.8 19.0 77.0 26.3 4	Min Mean Med Mex SD n	Min Mean Med Mex SD n	Min Mem Med Max SD n 1 2 2 3 4 4 4 228 393 3 649 168 3	Min Mees Med Max SD r	n Min Mean Med Max SD n 1 22.6 1 1 - 22.6 1 1 - 3.8 1 1 - 3.8 1 1 - 7.9 1 1 - 5.3 1 1 - 0.56 1 1	Min Men Med Max SD B
Parameter Dimension and Substrate - Riffle BF Width (ft) BF denn Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF wan Depth (ft) BF consumer was a second of the second of	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Mex SD n	Min Mean Med Mex SD n	Min Mem Med Max SD n 1 2 2 3 4 4 4 228 393 3 649 168 3	Min Mees Med Max SD r	n Min Mean Med Max SD n 1 22.6 1 1 - 22.6 1 1 - 3.8 1 1 - 3.8 1 1 - 7.9 1 1 - 5.3 1 1 - 0.56 1 1	Min Men Med Max SD B
Parameter Dimension and Substrate - Riffle BF Width (ft) BF Men Depth (ft) Bear Men Depth (ft) Bear Men Depth (ft) BF Men Depth (ft) Men	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n		Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD B
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprose Width (ft) BF Cross sectional Area (ff) BF Cross sectional Area (ff) Width Dopht Rate Entreachment Rate Brack Height Rate 450 (mm) Pattern Channel Belivstift (ft) Realmon of Curratine	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Mea SD n	Min Mem Med Max SID 8	Min Mees Med Max SD r	n Min Mean Med Max SD n 1 2.56	Min Men Med Max SD B
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprose Width (ft) BF Cross sectional Area BF Cross sectional Area BF Cross sectional Area Entrocubenets Reste Entrochment Reste Entrochment Reste Entrochment Reste Entrochment Reste Entrochment Reste Entrochment Reste Column - Pattern Calment Elebrishth (ft) Realmon of Currotine (ft) Restmant of Currotine (ft) Re	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD B
Parameter Dimension and Substrate - Riffle BF Walch (ft) Floodprone Wolds (ft) BF Cross-sectional Area (ft) BF Cross-sectional Area (ft) BF Cross-sectional Area (ft) Walch Dopht Rate Enterechment Rates Enterechment Rates Brack Height Rates Comment (ft) Rates Rates Channel Belowdith (ft) Redinson of Curvature (ft) Profile Riffle Leagth (ft) Profile Riffle Leagth (ft) Profile Riffle Leagth (ft) Profile (ft) Profile (ft) Profile (ft) Profile (ft) Profile (ft) Riffle Leagth (ft) Profile (ft) Profile (ft) Profile (ft) Profile (ft) Profile (ft) Riffle Leagth (ft) Profile (ft) Profile (ft) Profile (ft) Riffle Leagth (ft) Riffle Lea	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft)	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle Floodpones Width (1) If Mean Depth Rate Enterendment Rate Flood Depth Rate Flood Common - Channel Belavidth (1) Radian of Curvature (1) Radian of Curvature (1) Meander Wavetingh (1) Meander Wavetingh (1) Meander Wavetingh (1) Reffle Slope (10) Profile Riffle Slope (10) Roll capth (1) Pool Mean Depth (1) Pool Mean Depth (1) Substrate and Transport Parameter Refl Slope (10) Refl (1) Refl	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Cross-sectional Area (ft) BF Cross-sectional Area (ft) BF Cross-sectional Area (ft) BF Cross-sectional Area (ft) Width Depth Rate Enterechment Rates Brack Height Rates Cross-sectional Area (ft) Brack Bellevidth (ft) Rates Channel Bellevidth (ft) Redinso of Curvature (ft) Profile Riffle Length (ft) Profile Riffle Length (ft) Profile Riffle Length (ft) Profile (ft) Profile (ft) Profile (ft) Riffle Length (ft) Profile (ft) Profile (ft) Riffle Length (ft) Profile (ft) Riffle Length (ft) Profile (ft) Riffle Length (ft) Ri	NC Mtn./NC Pied. Rural		Man Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle Flosipnous Width (ft) Flosipnous Width Dophh Rate Flanten Churant Rate Flosipnous Width Common Pattern Channel Belivsdift (ft) Redman of Curvation Redman of Curvation (ft) Flosipnous Width Rate Profile Riftle Length (ft) Flosipnous Width Rate Profile Riftle Length (ft) Flosipnous Width Rate Profile Riftle Length (ft) Flosipnous Width (ft) Riftle Length (ft) Flosipnous Width (ft) Flosipnous Width (ft) Riftle Length (ft) Riftle Length (ft) Riftle Length (ft) Flosipnous Width (ft) Riftle Length (ft) Riftle Length (ft) Riftle Length (ft) Flosipnous Width (ft) Riftle Length	NC Mtn./NC Pied. Rural		Mis Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Gross sectional Aces (ff) BF Cross sectional Aces (ff) Width Depth Rate Enterochment Rate Brank Regist Rate 450 (mm) Pattern Claused Bellwidth (ft) Redinnor Claused (ft) Redinnor Claused (ft) Redinnor Claused (ft) Pool Machae Width Rate Profile Riffle Stope (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Substrate and Transport Parameters Reis Arch (Ph) (Ph) (Ph) (Ph) Substrate and Transport Parameters Reis Arch (Ph) (Ph) (Ph) (Ph) Mac part size (mm) mobilized at bankfull (Rogen Cares) Mac part size (mm) mobilized at bankfull (Rogen Cares) Additional Reach Parameters Deninge Aces (Stat)	NC Mtn./NC Pied. Rural		Mis Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Cross sectional Area BF Cross sectional Area BF Cross sectional Area France-drown Rate Enterectment Rate Enterectment Rate Enterectment Rate Brank Height Rates Add (onn - Channel Behvoidth (ft) Relians of Curvature (ft) R	NC Mtn./NC Pied. Rural		Mis Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Mex SD n	Min Mee Med Max SD 8	Min Men Med Max SD s - 22.6 1 - 0.70 1 - 1.0 1 - 4.0 1 - 8.4 1 - 8.4 1 - 3.9 1 - 1 1 - 2.1 1 - 2.2 1 - 3.3 1 - 3.5 1 - 1	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprone Width (ft) BF Gross sectional Aces (ff) BF Cross sectional Aces (ff) Width Depth Rate Enterochment Rate Brank Regist Rate 450 (mm) Pattern Claused Bellwidth (ft) Redinnor Claused (ft) Redinnor Claused (ft) Redinnor Claused (ft) Pool Machae Width Rate Profile Riffle Stope (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Pool Mac Depth (ft) Substrate and Transport Parameters Reis Arch (Ph) (Ph) (Ph) (Ph) Substrate and Transport Parameters Reis Arch (Ph) (Ph) (Ph) (Ph) Mac part size (mm) mobilized at bankfull (Rogen Cares) Mac part size (mm) mobilized at bankfull (Rogen Cares) Additional Reach Parameters Deninge Aces (Stat)	NC Mtn./NC Pied. Rural		Mis Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Mex SD n	Min Mee Med Max SD 8	Min Mear Med Max SD n 1 2.58 1 2.58 1 2.50 1 2.50 1 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Walch (ft) Biosphenes Walch (ft) BF Cross-sectional Area (ft) Boath Regist Rates Brash Regist Phy (ft) Sp. Substrate and Transport Parameters Brash Regist Phy (ft) Sp. Brash Shear	NC Mm/NC Peel Rend		Min Mean Med Mex SD n	Min Mean Med Max SD n	Min Mean Med Mea SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle Floodponce Width (1) Reflected Review (1) Reflected Chrowine (1) Reflected Chr	NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mean Med Mex SD n	Min Mee Med Max SD 8	Min Men Med Max SD s - 22.6 1 - 0.70 1 - 1.0 1 - 4.0 1 - 8.4 1 - 8.4 1 - 3.9 1 - 1 1 - 2.1 1 - 2.2 1 - 3.3 1 - 3.5 1 - 1	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Floodprose Width (ft) BF Gross sectional Area BF Cross sectional Area BF Cross sectional Area Entreachment Rate Entreachment Rate Entreachment Rate Entreachment Rate Brak Height Rate 450 (mm) Pattern Clament Bellwidth (ft) Relation of Curonium (ft) Substrate and Transport Parameters Relation of Curonium (ft) Substrate and Transport Parameter (ft) Relation of Curonium (ft) R	NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mon Med Mex SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) Bi Chose Width (ft) BF Chose sectional Area BF Chose sectional Area BF Chose sectional Area Enterendment Rates Channel Behvoidth (ft) Relination of Curvature (ft) Substrate and Transport Parameters Substrate and Transport Parameters Substrate and Transport Parameters Relination of Curvature (ft) NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mean Med Mex SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n	
Parameter Dimension and Substrate - Riffle BF Width (ft) BF Cross-sectional Archive (ft) BF Cross-sectional Archive (ft) BF Cross-sectional Archive (ft) Width Dopht Rate Entercedment Rate - Brank Height Rates (ds) (omn - Channel Belwoidth (ft) Redisson of Curvanue (ft) Substrate and Transport Parameters Schi-Schi-Chi-Fish-Red- Schi-Redisson of Curvanue (ft) Additional Reach Parameters Brack (ft) Sunsonson Water Surface Slope (Clament) (ft) Brack (f	NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mon Med Mex SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle Floodprone Width (1) Floodprone Width Rate Flood Red British (1) Red Member Width Rate Frofile Riffle Stepe (1) Red Member Width Rate Frofile Riffle Stepe (1) Robert (1) Flood Mac Depth (1) Substrate and Transport Parameter Riffle Stepe (1) Red (1) Flood rone (1) Flood (1) Floodprone (1) Flo	NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mon Med Mex SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n
Parameter Dimension and Substrate - Riffle BF Width (ft) BF Cross-sectional Area (ft) Width Dophi Rate Enterenchment Rates Brach Belgid Rates Brach Belgid Rates Brach Belgid Rates Common Bellowidth (ft) Redians of Curvature (ft) Prof. Macanet Width India Riffle Leagh (ft) Riffle Super (ft) Prof. Leagh (ft) Prof. Leagh (ft) Riffle Super (ft) Prof. Leagh (ft) Redians (f	NC Mm/NC Peel Rend		Mis Mess Mess SD n	Min Mean Med Max SD n	Min Mon Med Mex SD n	Min Mee Med Max SD 8	Miss Mess Mess SD 8	Min Mon Med Max SD	n Min Men Med Max SD n 1	Min Men Med Max SD n

· · · · · · · · · · · · · · · · · · ·	•	·	·	·	·	UT6	·				
arameter	USG: Gaug	Regional Curve Interval ¹	Pre-Existing Condition ¹	Reference Reach Data Morgan Creek	Design	As-built	MY1	MY2	MY3	MY4	MY5
nension and Substrate - Riffle		NC Mtn./NC Pied. Rural	Min Mean Med Max SD	n Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD
	BF Width (ft) -	5.3 4.1 -		- 16.7	- 6.0	6.1 6.2 6.2 6.3 0.06 2	- 5.8 1	- 5.8 1	- 6.0 1	- 5.64 1	- 5.89
	Floodprone Width (ft) -			- 35.0		- >27	- 32.4 1 - 0.70 1	- >35 1	- >35 1 - 0.60 1	- >35 1 - 0.50 1	- >35
	BF Mean Depth (ft)	0.4 0.5 -		1.06	- 0.7	0.70 0.70 0.70 0.80 0.02 2.00		- 0.60 1		- 0.50 1	- 0.56
	BF Max Depth (ft)			1.54		1.1 1.2 1.2 1.2 0.0 2	- 0.9 1	- 0.9 1	- 0.9 1	- 0.8 1 - 2.8 1	- 0.9
	BF Cross-sectional Area (ft²)	1.9 4.1 -		- 17.7	- 4.2	4.5 4.6 4.6 4.6 0.1 2 8.1 8.4 8.4 8.7 0.3 2	- 3.8 1	- 3.7 1	- 3.8 1	- 2.8 1	- 3.3
	Width/Depth Ratio -			- 15.8		8.1 8.4 8.4 8.7 0.3 2 4.3 5.5 5.5 6.6 1.2 2	- 9.0 1 - 5.6 1	- 9.1 1	- 9.5 1 - 4.9 1	- 11.3 1 - 5.2 1	- 10.5
	Bank Height Ratio -			12		43 33 33 6.0 1.2 2			- 1.1 1		- 0.9
	d50 (mm) -	1 1 1		- 1.2		1.0 1.0 1.0 1.0 0.0 2	- 1.0 1	- 1.0 1	1 1 1 1 1 1	- 1.0 1	0.9
tern	u.o (mm)										
	Channel Beltwidth (ft) -			80							
	Radius of Curvature (ft) -			23							
	Re:Bankfull width (ft/ft) -			- 1.38							
	Meander Wavelength (ft)			150							
	Meander Width Ratio -			- 4.8							
file											
	Riffle Length (ft)				12.0 31.8 19.0 77.0 26.3 4	14.3 18.7 14.9 30.5 6.9 4	17.8 27.0 27.0 36.3 9.2 2	27.5 31.0 31.0 34.5 3.5 2	35.2 35.4 35.4 35.6 0.2 2	27.2 27.7 27.7 28.1 0.4 2	28.7 32.2 32.2 35.6 3.4
	Riffle Slope (fl/fl) -	+ - + - + -		0.019	0.0052 0.0107 0.0106 0.017 0.0041 4 - 6.0 0 4	0.0000 0.0078 0.0118 0.0140 0.0084 4 6.5 11.6 7.9 21.4 5.7 5	0.0014 0.0052 0.0052 0.0090 0.0038 2	0.0029 0.0033 0.0033 0.0036 0.0004 2 9.40 16.30 16.30 23.20 6.90 2	0.0014 0.0021 0.0021 0.0028 0.0007 2 2.76 9.51 9.51 16.26 6.8 2	0.0009 0.0037 0.0037 0.0066 0.0029 2 22.49 23.09 23.09 23.69 0.6 2	0.0042 0.0066 0.0066 0.0090 0.0024
	Pool Length (ft) - Pool Spacing (ft) -	+ - +		75	- 6.U 0 4	0.5 11.6 7.9 21.4 5.7 5	0.0014 0.0052 0.0052 0.0090 0.0038 2 19.75 26.73 26.73 33.70 7.00 2 39.46 42.9 42.9 46.34 3.40 2	9.40 16.30 16.30 23.20 6.90 2	2.76 9.51 9.51 16.26 6.8 2 46.97 47.0 47.01 49.04 1.00 2	22.49 23.09 23.69 0.6 2 44.71 46.70 46.72 48.74 2.00 2	0.0042 0.0066 0.0066 0.0090 0.0024 20.56 21.95 21.95 23.33 1.4 45.24 46.69 46.69 48.13 1.45
	Pool Max Depth (ft) -			75	18.0 22.7 24.0 26.0 3.4 3	22.2 39.0 42.4 48.8 10.2 4	39.46 42.9 42.9 40.34 3.40 2	45.60 46.85 46.85 48.10 1.25 2	46.87 47.9 47.91 48.94 1.00 2 - 0.735	44.71 46.70 46.73 48.74 2.00 2 - 0.87	43.24 46.69 46.69 48.13 1.43
	Pool Volume (ft ³)			- 2.28	- 1.2	1/		1.1/	0.733	0.87	1.50
ibstrate and Transport Parameters			- - - - 							- - - - -
	Ri% / Ru% / P% / G% / S% -										
	C% / Sa% / G% / B% / Be% - d16 / d35 / d50 / d84 / d95 -										
	d16 / d35 / d50 / d84 / d95 - ear Stress (competency) lb/f -							 		 	
Max part size (mm) mobilize	d at bankfull (Roseen Curve)										
	er (transport capacity) W/m² -										
Additional Reach Parameters	er (transport espacity) With										
	Drainage Area (SM) -	0.02	0.02	- 0.83		- 0.02	- 0.02	- 0.02	- 0.02	- 0.02	- 0.02
In	npervious cover estimate (%)					- <5%	- <5%	- <5%	- <5%	- <5%	- <5%
	Rosgen Classification -			C4		- E	- E	- E	- E	. E	- E
	BF Velocity (fps)			7 - 3.55			- 3.32	- 3.32	- 3.32	- 3.32	- 3.32
	BF Discharge (cfs) -	7.8 18.3		98		- 212.2	. 15.2	. 15.2	. 15.2	. 15.2	. 15.2
	35 -										
	Channel length (ft) ²		- 75		- 311.0	- 350	- 104	- 104	- 104	- 104	- 104
	Sinuosity -			2.01		- 1.5	- 1.04	- 1.04	- 1.04	- 1.04	- 1.04
Water Si	urface Slope (Channel) (ft/ft)			- 0.0079		- 0.0043	- 0.0114	- 0.0114	- 0.0114	- 0.0114	- 0.0114
Pose	BF slope (ft/ft) - kfull Floodplain Area (acres) -			0.016	<u> </u>	- 0.004		 		 	
	L% / M% / H% / VH% / E% -						<u> </u>	 		 	
	el Stability or Habitat Metric -	1 1 1									
Cinam	Biological or Other -										
arman, W.A., D.E Wise, M.A. Walker, R. Ma		, D.R. Clinton, J.M. Patterson. 2000. Bankfull Reg	onal Curves for North Carolina Mountain Streams. In: AWRA Conference Proceedi	ings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in Extreme Er	vironments. Anchorage, Alaska.						
						UT8					
ameter	USG: Gaug	Regional Curve Interval 1	Pre-Existing Condition ¹	Reference Reach Data	Design	As-built	MY1	MY2	MY3	MY4	MY5
- marer	Gaug		The state of the s	Morgan Creek							
imension and Substrate - Riffle		NC Mtn./NC Pied. Rural	Min Mean Med Max SD	n Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD
inclusion and SubMittle - Killie	BF Width (ft) -	5.3 4.1 -	min mean med wat 3D	- 16.7	- 6.0	Man Mean Mea Wax SD II	min men men wat 3D ii	- 8.1 1	- 8.4 1	- 10.3 1	- 8.7
	Floodprone Width (ft)			- 35.0			 	. >40	- >50 1	-50	
	BF Mean Depth (ft) -	0.4 0.5 -		- 1.06	- 0.7			0.70 - 1	- 0.70 1	- 0.6 1	- >50
	BF Max Depth (ft) -			1.54				- 1.4 1	- 1.2 1	- 1.3 1	- 1.4
	BF Cross-sectional Area (ft²) -	1.9 4.1 -		17.7	- 4.2			- 6.0 1	- 5.8 1	- 5.9 1	- 6.1
	Width/Depth Ratio -			15.8				- 11.0 1	- 12.2 1	- 17.7 1	- 12.4
	Entrenchment Ratio -			- 2.0				- 5.3 1	- 5.1 1	- 4.2 1	. 5.0
	Developed the Laborator							10		0.02	

Parameter	USGS Gauge	Regional Curve Interval ¹	Pre-	Existing Condition	ı'		Reference Reach Data			Design			As-built			М	YI		MY2			MY3			MY4	4				MY5
							Morgan Creek																					4		
Dimension and Substrate - Riffle		NC Mtn./NC Pied. Rural	Min Mean M	Med Max	SD n		ean Med Max	SD n	Min Mean N	led Max	SD n	Min	Mean Med Max	SD	n Min M	ean Med	Max SD n	Min	Mean Med Max	SD		Med Max	SD n		ean Med	Max	SD n		Mean Med	Max SD n
	BF Width (ft)	5.3 4.1 -					5.7		- 6.0			-		-				-	8.1	-	1 - 8.4		- 1).3 -	-	- 1		8.7 -	- 1
	Floodprone Width (ft)						5.0											-	>50		1 - >50		- 1		50 -	-	- 1		>50 -	- 1
	BF Mean Depth (ft)	0.4 0.5 -				- 1.0			- 0.7			-		-				-	0.70	-	1 - 0.70		- 1	- (-	- 1		0.7 -	- 1
	BF Max Depth (ft)						54		-									-	1.4		1 - 1.2		- 1		.3 -	-	- 1		1.4 -	- 1
	BF Cross-sectional Area (ft²)	1.9 4.1 -					1.7		- 4.2			-		-					6.0	-	1 - 5.8		- 1	- 5	.9 -	-	- 1		6.1 -	- 1
	Width/Depth Ratio -						5.8		-									-	11.0		1 - 12.2		- 1			-	- 1		12.4 -	- 1
	Entrenchment Ratio -						.0					-		-				-	5.3	-	1 - 5.1		- 1		.2 -		- 1		5.0 -	- 1
	Bank Height Ratio -					- 1.	2					-		-				-	1.0	-	1 - 1.0		- 1	- 0.	93 -	-	- 1		1.00 -	1
	d50 (mm) -		-			-						-		-				-		-				-		-				
Pattern: reach is to short for this																												4		
1	Channel Beltwidth (ft)					- 8	0					-		-				-		-				-		-		-		
	Radius of Curvature (ft)					- 2						-		-				-		-						-				
	Rc:Bankfull width (fl/ft)						38					-		-				-						-						
1	Meander Wavelength (ft)					- 15						-		-				-		-				-		-				
	Meander Width Ratio -					- 4.	.8					-		-				-		-				-		-				
Profile: reach is to short for this d																												4		
	Riffle Length (ft)								12.0 31.8 1	77.0	26.3 4							-						-		-				
	Riffle Slope (fl/ft) -					- 0.0	19			106 0.017	0.0041 4	-		-				-		-				-		-		-		
	Pool Length (ft) -		-						- 6.0		0 4	-		-	-			-		-				-		-		-		
	Pool Spacing (ft) -					- 7	5		18.0 22.7 2	1.0 26.0	3.4 3	-		-				-		-				-		-		-		
	Pool Max Depth (ft) -		-			- 2.1	28		- 1.2			-		-	-			-		-				-		-		-		
	Pool Volume (ft ³) -											-		-				-		-				-		-		-		
Substrate and Transport Paramet	ters												· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		,									
	Ri% / Ru% / P% / G% / S% -											-		-				-		-				-		-				
	SC% / Sa% / G% / B% / Be% -											-		-				-		-				-						
	d16 / d35 / d50 / d84 / d95 -								' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			-		-				-		-				-		-				
Reach	h Shear Stress (competency) lb/f -											-		-				-						-				-		
Max part size (mm) mobi	ilized at bankfull (Rosgen Curve) -											-		-				-		-				-		-				
	Power (transport capacity) W/m ² -																											T . F		
Additional Reach Parameters	(-														1			'	•		- '-						
	Drainage Area (SM) -	0.02	(0.02		- 0.1	83					-		-				-	0.02	-		0.02		-	0.02	-		1 - 1	0.02	
	Impervious cover estimate (%) -		-									-		-					<5% -			<5% -			<5%			-	<5%	
	Rosgen Classification -					- c	4					-						-	E -			Е -			C	-		-	C	
	BF Velocity (fps) -				- 7	- 3.5	55					-		-					3.32 -			3.32 -			3.32			-	3.32	
	BF Discharge (cfs) -	7.8 18.3				- 9	8							-					15.2	-		15.2		-	15.2			T	15.2	
	35 -	7.0										-						-								-		-		
	Channel length (ft) ² -		75						311.0										104			104			104			+	104	
I	Chamier length (II)		- /3			. 21	01		- 311.0	-				+ -				+ -	104	-		104			104		$\dot{-}$	+	1.04	
Wester	er Surface Slope (Channel) (ft/ft) -					- 23			- -										0.0114	-		0114 -			0.0114	-		+	0.0114	
Wate	er Surface Slope (Channel) (IVII) - BF slope (ft/ft) -								- -										0.0114 -	-		0114 -			0.0114	-		+	0.0114	
1	Br stope (IUII) - Bankfull Floodplain Area (acres) -					- 0.0	110					-								-						-		+		
	% / L% / M% / H% / VH% / E% -											-								-						-		+		
BEHI VL	% / L% / M% / H% / VH% / E% -											-		-				-		-				-		-				
Ch	nannel Stability or Habitat Metric -											-		-				-		-				-		-				
	Biological or Other -							-				-						-						-		-	- -	-		

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

Logan Creek Restoration Project: DMS Project Logan Creek (4,172 LF)	et ID No. 92	515																									
Logan ereen (1,172 L1)		Cross-secti	ion X-1, Stati	ion 3+10 (Ri	iffle), Restor	ration Reach			Cross-sec	tion X-2, Sta	tion 3+70 (P	ool), Restorat	tion Reach			Cross-section	on X-3, Stati	on 12+57 (F	Riffle), Restor	ration Reach	1		C	ross-section	X-4, Station	n 13+00 (Poo	1)
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5 MY
Based on fixed baseline bankfull elevation																											
BF Width (ft)	24.1	24.0	24.1	24.0	26.0	27.3	-	25.9	26.8	26.0	26.0	26.1	25.8	-	25.2	24.3	24.5	24.3	24.2	24.5	-	27.6	27.1	27.1	27.4	26.8	27.4 -
BF Mean Depth (ft)	2.6	2.6	2.7	2.7	2.5	2.5	-	2.5	2.4	2.5	2.6	2.4	2.4	-	2.1	2.1	2.2	2.2	2.1	2.1	-	2.3	2.7	2.4	2.6	2.7	2.7 -
Width/Depth Ratio	9.2	9.3	8.9	8.9	10.4	11.1	-	10.5	11.0	10.3	10.2	10.9	10.9	-	12.0	11.6	11.4	11.3	11.4	11.5	-	12.1	10.0	11.2	10.7	9.8	10.1 -
BF Cross-sectional Area (ft²)	63.0	62.4	64.8	64.7	64.9	66.7	-	63.9	65.2	65.5	66.2	62.9	61.2	-	53.2	51.2	52.7	52.3	51.4	52.0	-	62.8	73.8	65.4	70.2	73.2	74.4 -
BF Max Depth (ft)	3.7	4.0	4.3	4.3	4.6	4.7	-	5.2	5.1	5.1	4.9	4.9	5.0	-	3.1	2.9	3.1	3.1	3.0	3.0	-	5.2	5.9	5.4	5.5	4.7	6.0 -
Width of Floodprone Area (ft)	>70	>70	>70	>70	>70	>70	-	>60	>60	>60	>60	>60	>60	-	>100	>100	>100	>100	>100	>100	-	>100	>100	>100	>100	>100	>100 -
Entrenchment Ratio	2.9	2.9	2.9	2.9	2.7	2.6	-	2.3	2.3	2.3	2.3	2.3	2.4	-	3.9	4.1	4.1	4.1	4.1	4.1	-	3.6	3.6	3.6	3.6	3.7	3.6 -
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	-	1.1	1.1	1.0	1.1	1.1	1.1	-	1.0	1.1	1.0	1.0	1.0	1.1	-	1.0	1.0	1.1	1.0	1.3	1.1 -
Wetted Perimeter (ft)	29.3	29.3	29.5	29.4	31.0	31.0	-	30.9	31.7	31.0	31.1	31.0	30.6	-	29.5	28.6	28.8	28.6	28.4	28.7	-	32.2	32.6	31.9	32.5	32.3	32.9 -
Hydraulic Radius (ft)	2.1	2.1	2.2	2.2	2.1	2.1	-	2.1	2.1	2.1	2.1	2.0	2.0	-	1.8	1.8	1.8	1.8	1.8	1.8	-	2.0	2.3	2.0	2.2	2.3	2.3 -
Based on current/developing bankfull feature																											
BF Width (ft)	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
BF Mean Depth (ft)	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width/Depth Ratio	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
BF Cross-sectional Area (ft²)	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Hydraulic Radius (ft)	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Cross Sectional Area between end pins (ft2)	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
d50 (mm)	13.8	30.7	15.2	23.3	35.4	23.5	-	-	-	-	-	-	-	-	19.2	43	29.2	22.2	21.6	15.9	-	-	-	-	-	-	
			ion X-5, Stati		- //							iffle), Restor					-		ool), Enhance							fle), Enhance	
Dimension and substrate Based on fixed baseline bankfull elevation	Base	Cross-secti	ion X-5, Stati MY2	ion 25+43 (I MY3	Pool), Restor MY4	ration Reach MY5	MY+	Base	Cross-secti MY1	MY2	ion 26+09 (R MY3	iffle), Restor	ation Reach MY5	MY+	Base	Cross-secti MY1	on 10, Static	on 37+05 (Po MY3	ool), Enhance MY4	ment Reach MY5	MY+	Base	Cross-section MY1	n 11, Statior MY2	37+20 (Rif MY3	ffle), Enhance MY4	
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft)		MY1	MY2	MY3	MY4	MY5		Base	MY1	MY2	MY3	MY4	MY5			MY1	MY2	MY3	MY4	MY5		Base	MY1	MY2	MY3	MY4	MY5 MY
Based on fixed baseline bankfull elevation BF Width (ft)	21.3 3.0				- //		MY+	Base 23.6				- //	MY5 22.8		Base 31.0 2.1		-				MY+					//	MY5 MY
Based on fixed baseline bankfull elevation	21.3	MY1 24.0	MY2 23.9	MY3 23.8	MY4 23.6	MY5	MY+	Base	MY1 22.6	MY2 22.5	MY3	MY4 22.6	MY5	MY+	31.0	MY1 33.4	MY2 33.4	MY3 33.3	MY4 33.0	MY5 32.2	MY+	Base 29.2	MY1 33.9	MY2 33.9	MY3 34.1	MY4 34.2	35.0 - 1.6 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	21.3	MY1 24.0 3.1	MY2 23.9 3.1	MY3 23.8 3.0	MY4 23.6 3.0	MY5 23.8 3.0	MY+ - -	23.6 2.2	MY1 22.6 2.2	MY2 22.5 2.3	MY3 22.4 2.3	MY4 22.6 2.2	MY5 22.8 2.2	MY+ - -	31.0 2.1	MY1 33.4 2.1	MY2 33.4 2.1	MY3 33.3 2.3	MY4 33.0 2.3	MY5 32.2 2.4	MY+ - -	29.2 2.1	MY1 33.9 1.8	33.9 1.8	MY3 34.1 1.7	MY4 34.2 1.7	35.0 - 1.6 - 21.6 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft)	21.3 3.0 7.1	24.0 3.1 7.8	MY2 23.9 3.1 7.8	MY3 23.8 3.0 8.0	MY4 23.6 3.0 7.9	MY5 23.8 3.0 8.0	MY+ - -	23.6 2.2 10.8	22.6 2.2 10.1	MY2 22.5 2.3 9.9	MY3 22.4 2.3 9.9	MY4 22.6 2.2 10.3	22.8 2.2 10.2	MY+ - - -	31.0 2.1 14.4	MY1 33.4 2.1 15.6	MY2 33.4 2.1 15.9	MY3 33.3 2.3 14.8	MY4 33.0 2.3 14.1	32.2 2.4 13.7	MY+ - - -	29.2 2.1 14.0	MY1 33.9 1.8 18.6	33.9 1.8 18.6	34.1 1.7 19.6	MY4 34.2 1.7 20.0	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²)	21.3 3.0 7.1 63.9	MY1 24.0 3.1 7.8 74.3 5.3 >90	MY2 23.9 3.1 7.8 73.3 5.4 >90	MY3 23.8 3.0 8.0 71.0	MY4 23.6 3.0 7.9 70.6	MY5 23.8 3.0 8.0 70.7 5.4 >90	MY+	23.6 2.2 10.8 51.7 3.4 >95	MY1 22.6 2.2 10.1 50.2 3.5 >95	MY2 22.5 2.3 9.9 51.4 3.7 >95	MY3 22.4 2.3 9.9 50.8 3.6 >95	MY4 22.6 2.2 10.3 49.1 3.7 >95	MY5 22.8 2.2 10.2 51.0 3.6 >95	MY+	31.0 2.1 14.4 66.6	MY1 33.4 2.1 15.6 71.2	MY2 33.4 2.1 15.9 70.3	MY3 33.3 2.3 14.8 74.7	MY4 33.0 2.3 14.1 77.1	MY5 32.2 2.4 13.7 75.7	MY+	29.2 2.1 14.0 60.7 2.9 >54	MY1 33.9 1.8 18.6 61.8	33.9 1.8 18.6 61.8	MY3 34.1 1.7 19.6 59.4	MY4 34.2 1.7 20.0 58.3	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft)	21.3 3.0 7.1 63.9 5.4	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4	MY2 23.9 3.1 7.8 73.3 5.4	MY3 23.8 3.0 8.0 71.0 5.4	MY4 23.6 3.0 7.9 70.6 5.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8	MY+	23.6 2.2 10.8 51.7 3.4	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0	MY2 22.5 2.3 9.9 51.4 3.7	MY3 22.4 2.3 9.9 50.8 3.6	MY4 22.6 2.2 10.3 49.1 3.7	22.8 2.2 10.2 51.0 3.6	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2	MY1 33.4 2.1 15.6 71.2 3.5	MY2 33.4 2.1 15.9 70.3 3.4	MY3 33.3 2.3 14.8 74.7 3.5	MY4 33.0 2.3 14.1 77.1 3.6	MY5 32.2 2.4 13.7 75.7 3.6	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5	MY1 33.9 1.8 18.6 61.8 3.0	33.9 1.8 18.6 61.8 3.0 >54 1.6	MY3 34.1 1.7 19.6 59.4 2.9	MY4 34.2 1.7 20.0 58.3 3.1	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0	22.8 2.2 10.2 51.0 3.6 >95 4.1	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1	33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3	32.2 2.4 13.7 75.7 3.6 >60 1.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5	33.9 1.8 18.6 61.8 3.0 >54 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 1.1 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9	MY5 22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0	22.8 2.2 10.2 51.0 3.6 >95 4.1	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1	33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3	32.2 2.4 13.7 75.7 3.6 >60 1.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5	33.9 1.8 18.6 61.8 3.0 >54 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9	MY5 22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9	MY5 22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	MY5 22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2 - 1.5 -
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0 1.8	22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >>60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9 2.1	MY+	29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 38.2 - 1.5
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 1.0 28.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	33.3 2.3 14.8 74.7 3.5 >60 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 1.3 36.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY2 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.6 -	34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 38.2 - 1.5
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.2 37.6 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.0 28.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6	MY2 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Bank Height Ratio Bank Height Ratio Bank Height Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.8 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 6.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.1 37.6 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7	32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6 1.6 - - - - - - - - - - -	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 38.2
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) BF Width (ft) BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio BAR Height Ratio	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 70.7 5.4 >90 3.8 1.0 29.7 2.4	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1 1.9	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 2.3 14.8 74.7 3.5 >60 1.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7 2.0	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6	MY2 33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 38.2
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 70.7 5.4 >90 3.8 1.0 29.7 2.4	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.8 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1 1.9	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 6.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7 2.0	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6 1.6 - - - - - - - - - - -	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.1 - 38.2
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.8 1.0 30.0 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 70.7 5.4 >90 3.8 1.0 29.7 2.4	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 4.0 1.8	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 1.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1 1.9	MY3 22.4 2.3 9.9 50.8 3.6 >95 4.2 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 6.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 2.1 15.6 71.2 3.5 >60 1.8 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 14.8 74.7 3.5 >60 1.8 1.0 37.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7 2.0	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6 1.6 - - - - - - - - - - -	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width (ft) BF Hax Depth (ft) Width (ft) BF Cross-sectional Area (ft²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Cross Sectional Area between end pins (ft²)	21.3 3.0 7.1 63.9 5.4 >80 4.4 1.0 27.3 2.3	MY1 24.0 3.1 7.8 74.3 5.3 >90 4.4 1.0 30.2 2.5	MY2 23.9 3.1 7.8 73.3 5.4 >90 3.00 2.4	MY3 23.8 3.0 8.0 71.0 5.4 >90 3.8 1.0 29.8 2.4	MY4 23.6 3.0 7.9 70.6 5.4 >90 3.8 1.1 29.6 2.4	MY5 23.8 3.0 8.0 70.7 5.4 >90 3.8 1.0 29.7 2.4	MY+	Base 23.6 2.2 10.8 51.7 3.4 >95 1.0 28.0 1.8 24.9	MY1 22.6 2.2 10.1 50.2 3.5 >95 4.0 27.0 1.9	MY2 22.5 2.3 9.9 51.4 3.7 >95 4.2 1.0 27.1 1.9	MY3 22.4 2.3 9.9 50.8 3.6 >95 1.0 26.9 1.9	MY4 22.6 2.2 10.3 49.1 3.7 >95 4.2 1.0 26.9 1.8	22.8 2.2 10.2 51.0 3.6 >95 4.1 1.0 27.3 1.9	MY+	31.0 2.1 14.4 66.6 3.5 >60 4.2 1.0 35.2 1.9	MY1 33.4 15.6 71.2 3.5 >60 1.8 1.1 37.6 1.9	MY2 33.4 2.1 15.9 70.3 3.4 >60 1.8 1.0 37.6 1.9	MY3 33.3 14.8 74.7 3.5 >60 1.8 2.0	MY4 33.0 2.3 14.1 77.1 3.6 >60 1.8 1.3 37.7 2.0	MY5 32.2 2.4 13.7 75.7 3.6 >60 1.9 2.1	MY+	Base 29.2 2.1 14.0 60.7 2.9 >54 4.5 1.1 33.4 1.8	MY1 33.9 1.8 1.8 61.8 3.0 >54 1.6 1.6 1.6 - - - - - - - - - - -	33.9 1.8 18.6 61.8 3.0 >54 1.6 1.2 37.6 1.6	MY3 34.1 1.7 19.6 59.4 2.9 >54 1.5 1.1 37.6 1.6	MY4 34.2 1.7 20.0 58.3 3.1 >54 1.5 1.1 37.6 1.6	MY5 MY 35.0 - 1.6 - 21.6 - 56.5 - 3.2 - >54 - 1.5 - 1.1 - 38.2

MICHAEL BAKER ENGINEERING, INC. MY5 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

		C	ross-section	X-8.5 Static	n 0+60* (Pa	ool)			C	ross-section	X-9 Station	0+73* (Riff	le)															•
imension and substrate	Base*	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY-
ased on fixed baseline bankfull elevation	Duse	.,,,,,	2		.,,,,			Dube	.,	.,,,,,		.,,,,,			Dube	.,,,,,	1112			.,,,,		Buse	.,,,,,	2	.,,,,	1,111		
BF Width (ft)		8,6	8.2	8.9	8.7	8.6	-	6,3	5.9	5.8	6.2	5.5	6.0	_			-	-		-	-	-	-	T -		_		_
BF Mean Depth (ft)		0.9	0.9	0.9	0.9	0.9	-	0.7	0.7	0.7	0.6	0.7	0.6	_	_	-	_	-	-	-	<u> </u>	<u> </u>	_	_	_	_		+
Width/Depth Ratio		9.4	9,9	9.9	9.3	9.7	-	8.7	8.5	8.4	9.9	7.9	10.0	_	_	_	_	-	_	-	-	_	_	_	_	_		_
BF Cross-sectional Area (ft²)		7.9	8.2	8.1	8.1	7.7	-	4.5	4.1	4.0	3.8	3.8	3.6	_	_	-	_	-	-	-	<u> </u>	-	_	_	-	_		+
BF Max Depth (ft)		1.5	1.5	1.4	1.5	1.5	-	1.2	1.1	1.0	1.0	1.0	1.1	_	_	_	_	-	_	-	-	_	_	_	_	_	_	_
Width of Floodprone Area (ft)		32.0	30.9	30.9	32.4	31.7	-	26.8	23.8	22.6	22.6	22.6	23.4	_	_	-	_	-	-	-	-	-	_	_	_	-		_
Entrenchment Ratio	_	3.7	3.4	4.5	6.1	5.7	-	4.3	4.0	3.9	4.9	5.3	5.2	_	_	-	_	-	-	-	-	_	_	_	_	_	-	_
Bank Height Ratio	-	1.1	1.0	1.1	1.1	1.1	-	1.0	1.0	1.0	1.1	1.0	0.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wetted Perimeter (ft)	_	10.4	10.0	10.7	10.5	10.4	-	7.7	7.3	7.2	7.4	6.8	7.2	_	_	-	_	-	-	-	-	_	_	_	_	_	-	-
Hydraulic Radius (ft)	-	0.8	0.8	0.8	0.8	0.7	-	0.6	0.6	0.6	0.5	0.6	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-		-
ased on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Cross-sectional Area (ft2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cross Sectional Area between end pins (ft2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d50 (mm)	_	_	_	-	_	_	-	_	_	_	_		_	_		_	_	_	_	-	-	I .	T -	_	_	-	_	-

			Cross-section	1 X-7, Statio	n 0+54 (Poo	ol)			(Cross-section	X-8, Station	n 0+69 (Riffl	e)															
imension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY
ased on fixed baseline bankfull elevation																												
BF Width (ft)	9.8	9.2	9.4	9.7	9.1	9.7	-	6.1	5.8	5.8	6.0	5.6	5.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Mean Depth (ft)	1.0	0.9	0.8	0.8	0.8	0.8	-	0.8	0.7	0.6	0.6	0.5	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width/Depth Ratio	9.5	10.7	12.1	11.2	11.2	12.1	-	8.1	9.0	9.1	9.5	11.3	10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Cross-sectional Area (ft2)	10.1	7.9	7.4	7.4	7.3	7.8	-	4.6	3.8	3.7	3.8	2.8	3.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	1.7	1.5	1.2	1.2	1.3	1.5	-	1.1	0.9	0.9	0.9	0.8	0.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width of Floodprone Area (ft)	> 50	> 50	> 50	> 50	>50	>50	-	> 35	> 35	> 35	> 35	>35	>35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio	3.8	4.0	3.1	3.3	3.4	3.8	-	6.6	5.6	5.4	4.9	5.2	5.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	1.0	1.1	0.9	0.9	-	1.0	1.0	1.0	1.1	1.0	0.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wetted Perimeter (ft)	11.8	10.9	11.0	11.3	10.7	11.3	-	7.7	7.1	7.1	7.3	6.6	7.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	0.9	0.7	0.7	0.7	0.7	0.7	-	0.6	0.5	0.5	0.5	0.4	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ased on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Τ-
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Cross-sectional Area (ft2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cross Sectional Area between end pins (ft2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d50 (mm)	_	_	_	_	_	_	T -	_	_	_	_	_	_	_		_	_	_	_	-	_	_	_	_	_	-		_

MICHAEL BAKER ENGINEERING, INC. MY5 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

· · ·		C	ross-section	X-12. Statio	on 0+9.6 (Rif	fle)																						
mension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY
sed on fixed baseline bankfull elevation	Duse	.,,,,,	2		.,,,,			Buse	.,,,,	2		.,,,,			Buse	.,,,,	1112			.,,,,	1111	Buse	.,,,,,	2	11115	1,11	.,,,,	
BF Width (ft)	-	_	8.1	8.4	10.3	8.7	T -	.	-			_	-	_	-	_	_	Ι.	-	_		-	-		_	-	_	$\overline{}$
BF Mean Depth (ft)		-	0.7	0.7	0.6	0.7	_	-	-	-	-	-	-	_	-	_	_	-	_	-	-	_	-	-	_	-	_	<u> </u>
Width/Depth Ratio		-	11.0	12.2	17.7	12.4	_	_	-	-	-	-		_	_	_	_	-	-	_	_		_	-	_	-	_	·
BF Cross-sectional Area (ft²)		_	6.0	5.8	5.9	6.1	_	_	_	_	_	_		_	_	_	_	_	_	-	-	_	_	_	_	-	_	
BF Max Depth (ft)		-	1.4	1.2	1.3	1.4	_	_	-	-	-	-		_	_	_	_	-	_	_	_	_	_	-	_	-	_	
Width of Floodprone Area (ft)		_	> 50	> 50	>50	>50	_		_	_	_	_		_	_	_	_	_	_	-	-	_	_	_	_	-	_	
Entrenchment Ratio		_	5.3	5.1	4.2	5.0	_	_	-	-	-	-		_	_	_	_	-	_	_	_		_	-	_	-	_	
Bank Height Ratio		_	1.0	1.0	0.9	1.0	_	_	_	_	_	-		_	_	_	_	_	_	-	-	_	_	_	_	-	_	
Wetted Perimeter (ft)		-	9.6	9.8	11.4	10.1	_		_	_	_	_		_	_	_	_	_	_	-	-	_	_	_	_	-	_	+
Hydraulic Radius (ft)	-	-	0.6	0.6	0.5	0.6	_	-	-	-	-	-	-	_	-	_	_	-	-	_	-	_	-	-	_	-	_	+
ed on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Cross-sectional Area (ft²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Cross Sectional Area between end pins (ft2)	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

MICHAEL BAKER ENGINEERING, INC. MY5 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Table 12. MY1 to MY5 Stream Problem Areas and Photos Logan Creek Stream Restoration Project, Number #92515

Feature Issue	Station	Suspected Cause	Status	Photo #
Aggradation/Bar Formation	None	N/A	N/A	N/A
	2+10	CPA 2-1 . Identified MY2. Flooding during December and January caused a small area of bank scour at this location. Bank was repaired in 2017 and has remained stable through 2019 (MY5).	Resolved	1, 2, 3, & 4
	4+60	CPA 2-3. Identified MY2. Flooding during December and January 2017 caused a small area of bank scour at this location. The bank was repaired in 2017 and the area has not worsened, is stabilizing and is supporting more vegetation in 2019.	Resolved	9,10,11 & 12
	11+70	CPA 2-4. Identified MY2. Flooding during December and January 2017 caused a small area of bank scour at this location. This bank has revegetated and stabilized. It was stable in the fall of 2019.	Resolved	13,14,15 & 16
Bank Scour	26+60	CPA 2-5. Identified MY2. Flooding during December and January 2017 caused a small area of bank scour at this location. This scour area has revegetated and stabilized. It was stable in the fall of 2019.	Resolved	17, 18, 19 & 20
	27+00	CPA 2-6. Identified MY2. Flooding during December and January 2017 caused a small area of bank scour at this location. Scour area was repaired in 2017 and has revegetated and stabilized in 2018 and remains stable in 2019.	Resolved	21, 22, 23, 24 & 25
	21+00	CPA 3-2. Identified MY3. Bank slump (approx. 6 ft.) along left bank of main stem. Has stabilized and is no longer eroding.	Resolved	29, 30 & 31
	11+50	CPA 3-4. Identified MY3. Bank slump (approx. 8 ft.) along right bank of main stem. The slump area has not worsened, is stabilizing and is supporting more vegetation in 2019.	Resolved	35, 36 & 37

Table 12. continu	ed			
	2+00	CPA 2-2. Identified MY2. Piping of log structure after the fabric sealing this structure tore during flooding of December and January. Structure was repaired in 2017 and was no longer piping in MY5.	Resolved	5, 6, 7 & 8
Foreign count	23+75	CPA 3-1. Identified MY3. Piping of log structure has stabilized and is no longer piping in MY5.	Resolved	26, 27 & 28
Engineered Structures	14+75	CPA 3-3. Identified MY3. Piping of log structure after the fabric sealing this structure tore. Structure has stabilized and is no longer piping in MY5.	Resolved	32, 33 & 34
	UT8 - 00+40	CPA 3-5. Identified MY3. Piping of log structure on UT-8 near the confluence of UT-8 and Logan Creek. Hand repairs made Feb-20. It is no longer piping.	Resolved	38 & 39
	(approximately) 23+00 to 28+00	EA-1. Identified MY2. The nature trail (an allowance in the easement); was mowed wide. We discussed this with staff at Lonesome Valley and they reduced the width they are maintaining.	Resolved, working with Stewardship Program to document agreed to width.	40, 41
Encroachments	Left bank near 28+50	EA-2. Identified MY5. There is a narrow trail down the adjacent slope from a private residence and across a foot bridge. We will work with Lonesome Valley to resolve.	On Going	42, 43
	Left bank near 23+00	EA-3 . Identified MY5. There is a small triangular area being moved by an adjacent landowner. We will work with Lonesome Valley to resolve.	On Going	44, 45

Logan Creek Stream Restoration Project – Monitoring Years 1-5 CPA Photos

Photo 1. CPA 2-1, Station 2+10, small area of bank scour caused by flooding of December and January.

Photo 2. CPA 2-1, Station 2+10, same area as shown in photo 1, with vegetation stabilizing site. Bank was graded, matting was reinstalled, and live stakes were added during October 2017.

Photo 3. CPA 2-1, Scour area has stabilized and is no longer eroding after repairs were made in 2017.

Photo 4. CPA 2-1, Scour area is stable and supporting vegetation, late winter photo (3-2020).

Photo 5. CPA 2-2 – Station 2+00, Piping of log structure after the fabric sealing this structure tore during flooding of December and January.

Photo 7. CPA 2-2 – Log structure that was repaired in 2017 has remained stable and is no longer piping.

Photo 6. CPA 2-2 – Station 2+00, Piping structure was repaired in May 2017. Fabric was replaced and substrate was replaced upstream of log structure.

Photo 8. CPA 2-2 – Log structure has remained stable and not piping, late winter photo (3-2020) after multiple high water events.

Photo 9. CPA 2-3 – Station 4+60, small area of bank scour caused by flooding of December and January 2016.

Photo 10. CPA 2-3 – Station 4+60, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

Photo 11. CPA 2-3 – Station 4+60, bank scour area has vegetated but not completely stable.

Photo 12. CPA 2-3 – Station 4+60, bank scour area maintaining vegetation but still some signs it is not completely stable.

Photo 13. CPA 2-4 – Station 11+70, small area of bank scour caused by flooding of December and January 2016.

Photo 14. CPA 2-4 – Station 11+70, scour area noted in MY2 has stabilized for the most part. Livestakes were planted in the scour area as well as the bank downstream of the problem area in October 2017.

Photo 15. CPA 2-4 – Station 11+70, Bank has vegetated and stabilized in 2018.

Photo 16. CPA 2-4 – Station 11+70, Bank maintained not completely stable but improving with growing vegetation in 2019

Photo 17. CPA 2-5 – Station 26+60, small area of bank scour caused by flooding of December and January 2016.

Photo 18. CPA 2-5 – Station 26+60, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

Photo 19. CPA 2-5 – Station 26+60, Scour area has revegetated and stabilized.

Photo 20. CPA 2-5 – Station 26+60, Scour area stabilized with vegetation in 2019, late winter photo (3-2020).

Photo 21. CPA 2-6 – Station 27+00, small area of bank scour caused by flooding of December and January 2016.

Photo 23. CPA 2-6 – Station 27+00, scour area has revegetated and stabilized in 2018.

Photo 25. CPA 2-6 – Station 27+00, scour area vegetated and stable, some bare bank late winter (3-2020).

Photo 22. CPA 2-6 – Station 27+00, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

Photo 24. CPA 2-6 – Station 27+00, scour area remained vegetated and stable in 2019.

Photo 26. CPA 3-1 – Station 23+75, piping of log structure after the fabric sealing this structure tore in 2017.

Photo 27. CPA 3-1 – Log structure has stabilized and is no longer piping.

Photo 28. CPA 3-1 – Log structure continues to be stable in late winter 2020.

Photo 29. CPA 3-2 – Station 21+00, small bank slump area (approx. 6 ft.) along left bank of main stem.

Photo 30. CPA 3-2 – Area has stabilized and is fully vegetated.

Photo 31. CPA 3-2 – Area has stabilized and is fully vegetated, in late winter 2020.

Photo 32. CPA 3-3 – Station 14+75, piping of log structure after the fabric sealing this structure tore in 2017.

Photo 33. CPA 3-3 – Station 14+75, piping log structure has stabilized and is no longer piping in 2018.

Photo 34. CPA 3-3 – Station 14+75, Log structure continues to be stable in late winter 2020.

Photo 35. CPA 3-4 – Station 11+50, small bank slump (approx. 8 ft.) along right bank of main stem.

Photo 36. CPA 3-4 – Station 11+50, slump area has not stabilized but has not worsened in 2018.

Photo 37. CPA 3-4 – Station 11+50, slump area left a gap in the bank but it is stable in late winter 2020.

Photo 38. CPA 3-5 – Station UT8 00+40, piping of log structure on UT-8 near the confluence of UT-8 and Logan Creek

Photo 39. CPA 3-5 – Station UT8 00+40, piping of log structure repaired, in late winter 2020.

Encroachments

Photo 40. EA 2-1 – Maintenance workers mowed the nature trail wider than had been agreed to earlier, near stationing 23+00 to 28+00.

Photo 41. EA 2-1 – Maintenance workers now maintaining the trail at 7' width.

Photo 42. EA 2. Older foot bridge that was installed by Lonesome Valley and later abandoned, but not removed. Landowner now is using it to access the easement area.

Photo 43. EA 2. Appears that a landowner is maintaining a trail down the slope to the foot bridge.

Photo 35. EA 3. Landowner is mowing a small triangular area into the easement.

Photo 36. EA 3. Maintenance workers now maintaining the trail at 7' width.